
 

 

FORWARD ....................................................................................................................... 17 

CHAPTER THE OVERVIEW .................................... 18 

INTRODUCTION......................................................................................................... 18 
OTHER RESOURCES................................................................................................... 19 
THE COURSE............................................................................................................. 19 

The rationale........................................................................................................ 20 
What you will learn.............................................................................................. 20 
Why not NT? ........................................................................................................ 22 

COURSE MATERIAL .................................................................................................. 22 
Textbook............................................................................................................... 23 
85321 CD-ROM................................................................................................... 23 
85321 Website...................................................................................................... 23 

SOLVING PROBLEMS................................................................................................. 23 
COMPUTERS IN THE REAL WORLD............................................................................ 24 

What you think computers are ............................................................................. 24 
Some alternatives................................................................................................. 24 

AN OVERVIEW OF LINUX .......................................................................................... 26 
Booting................................................................................................................. 27 
Running................................................................................................................ 28 
Shutting down ...................................................................................................... 29 
Layers .................................................................................................................. 29 

CONCLUSIONS........................................................................................................... 31 

CHAPTER ........................................................................................................ 32 

THE WHAT, WHY AND HOW OF SYS ADMIN ........................... 32 

INTRODUCTION......................................................................................................... 32 
WHAT SYSTEMS ADMINISTRATORS DO..................................................................... 32 

Why do we need them .......................................................................................... 33 
What they do ........................................................................................................ 33 

HOME AND THE REAL WORLD.................................................................................. 36 
WHAT SYS ADMINS NEED TO KNOW......................................................................... 36 
WHY UNIX? ............................................................................................................ 38 
UNIX PAST, PRESENT AND FUTURE.......................................................................... 39 
LINUX ....................................................................................................................... 39 
THE RELATIONSHIP BETWEEN LINUX AND UNIX...................................................... 40 
SOME MORE SYS ADMIN THEORY ............................................................................. 40 
DAILY OPERATIONS .................................................................................................. 41 

Automate, automate and automate ...................................................................... 41 
System monitoring ............................................................................................... 41 

HARDWARE AND SOFTWARE..................................................................................... 42 
Evaluation............................................................................................................ 43 
Purchase .............................................................................................................. 43 



 

 

Installation........................................................................................................... 43 
Hardware............................................................................................................. 44 

ADMINISTRATION AND PLANNING............................................................................. 45 
Documentation..................................................................................................... 45 

POLICY ..................................................................................................................... 48 
Penalties .............................................................................................................. 48 
Types of Policy..................................................................................................... 48 
Creating policy .................................................................................................... 49 

CODE OF ETHICS....................................................................................................... 49 
SAGE-AU code of ethics...................................................................................... 49 
SAGE-AU code of ethics...................................................................................... 50 

PEOPLE SKILLS.......................................................................................................... 50 
Communicating with Users.................................................................................. 51 
How not to communicate with users.................................................................... 54 

CONCLUSIONS........................................................................................................... 54 

CHAPTER ........................................................................................................ 55 

INFORMATION SOURCES AND PROBLEM SOLVING ........ 55 

INTRODUCTION......................................................................................................... 55 
OTHER RESOURCES................................................................................................... 55 
INFORMATION SOURCES........................................................................................... 55 
PROFESSIONAL ORGANISATIONS............................................................................... 56 

The SAGE groups ................................................................................................ 56 
SAGE-AU............................................................................................................. 57 
UNIX User groups ............................................................................................... 57 
The ACS, ACM and IEEE .................................................................................... 57 

BOOKS AND MAGAZINES........................................................................................... 57 
Bibliographies...................................................................................................... 58 
O’Reilly books...................................................................................................... 58 
Magazines ............................................................................................................ 58 

INTERNET RESOURCES.............................................................................................. 58 
The 85321 Website............................................................................................... 59 
How to use the Internet........................................................................................ 59 
Software on the Internet....................................................................................... 59 
Discussion forums................................................................................................ 60 
Just the FAQs....................................................................................................... 61 
Google and Deja News ........................................................................................ 61 
Mailing lists ......................................................................................................... 61 
Other Discussion Forums.................................................................................... 62 
Internet based Linux resources............................................................................ 62 

PROBLEM SOLVING ................................................................................................... 63 
Guidelines for solving problems.......................................................................... 64 
Examples of solving problems ............................................................................. 65 

CONCLUSIONS........................................................................................................... 65 
REVIEW QUESTIONS................................................................................................. 65 
INTRODUCTION......................................................................................................... 66 



 

 

OTHER RESOURCES................................................................................................... 66 
WHAT YOU NEED TO LEARN...................................................................................... 66 
INTRODUCTORY UNIX ............................................................................................. 67 

Why do I need to know the command line? ......................................................... 68 
How do I learn all this stuff? ............................................................................... 68 
UNIX Commands are programs .......................................................................... 69 

VI............................................................................................................................. 70 
An introduction to vi........................................................................................... 70 

UNIX COMMANDS .................................................................................................... 72 
Philosophy of UNIX commands........................................................................... 72 
UNIX command format........................................................................................ 73 
A command for everything................................................................................... 74 

ONLINE HELP ............................................................................................................ 74 
Using the manual pages....................................................................................... 75 
Is there a man page for... ..................................................................................... 75 
man page format .................................................................................................. 75 
HTML versions of Manual Pages ........................................................................ 76 

SOME UNIX COMMANDS.......................................................................................... 76 
Identification Commands..................................................................................... 77 
Simple commands ................................................................................................ 78 
Filters................................................................................................................... 79 
uniq ..................................................................................................................... 80 
tr ......................................................................................................................... 81 
cut ....................................................................................................................... 81 
paste ................................................................................................................... 82 
grep ..................................................................................................................... 82 
wc ......................................................................................................................... 83 

GETTING MORE OUT OF FILTERS................................................................................ 84 
CONCLUSIONS........................................................................................................... 84 

CHAPTER ........................................................................................................ 85 

THE FILE HIERARCHY ............................................................................. 85 

INTRODUCTION......................................................................................................... 85 
Why? .................................................................................................................... 85 

THE IMPORTANT SECTIONS....................................................................................... 86 
The root of the problem ....................................................................................... 86 

HOMES FOR USERS.................................................................................................... 87 
Every user needs a home... .................................................................................. 87 
Other homes?....................................................................................................... 88 

/USR AND /VAR .................................................................................................... 88 
And the difference is... ......................................................................................... 88 
/usr/local ..................................................................................................... 89 
lib, include and src .............................................................................................. 90 
/var/spool ..................................................................................................... 90 
X Windows ........................................................................................................... 91 

BINS.......................................................................................................................... 91 



 

 

Which bin? ........................................................................................................... 91 
/bin ..................................................................................................................... 92 
/sbin ................................................................................................................... 92 
/usr/bin ............................................................................................................. 93 
/usr/local/bin ................................................................................................. 93 

CONFIGURATION FILES, LOGS AND OTHER BITS! ....................................................... 93 
etc etc etc. ............................................................................................................ 93 
Logs...................................................................................................................... 94 
/proc ................................................................................................................... 94 
/dev ..................................................................................................................... 94 

CONCLUSION ............................................................................................................ 94 
Future standards.................................................................................................. 94 

REVIEW QUESTIONS................................................................................................. 95 
4.1 ........................................................................................................................ 95 
4.2 ........................................................................................................................ 95 
4.3 ........................................................................................................................ 95 

CHAPTER PROCESSES AND FILES........................................... 96 

INTRODUCTION......................................................................................................... 96 
OTHER RESOURCES................................................................................................... 96 
MULTIPLE USERS...................................................................................................... 97 

Identifying users................................................................................................... 97 
Users and groups................................................................................................. 97 
Names and numbers............................................................................................. 97 
id ......................................................................................................................... 98 

COMMANDS AND PROCESSES.................................................................................... 98 
Where are the commands?................................................................................... 98 
which ................................................................................................................... 98 
Why can’t I run my shell script? .......................................................................... 99 
When is a command not a command? ............................................................... 100 
Why shell commands are faster than other commands ..................................... 100 

CONTROLLING PROCESSES...................................................................................... 101 
Viewing existing processes ................................................................................ 101 
Job control ......................................................................................................... 105 
Manipulating processes ..................................................................................... 107 

PROCESS ATTRIBUTES............................................................................................. 109 
Parent processes................................................................................................ 109 
Process UID and GID ....................................................................................... 110 
Real UID and GID............................................................................................. 110 
Effective UID and GID ...................................................................................... 110 

FILES ...................................................................................................................... 111 
File types............................................................................................................ 112 
Types of normal files.......................................................................................... 112 
File attributes..................................................................................................... 113 
Viewing file attributes........................................................................................ 114 

FILE PROTECTION.................................................................................................... 116 
File operations................................................................................................... 116 



 

 

Users, groups and others................................................................................... 116 
Three sets of file permissions............................................................................. 117 
Special permissions ........................................................................................... 118 

EFFECTIVE UID AND GID ...................................................................................... 119 
setuid and setgid ................................................................................................ 119 

NUMERIC PERMISSIONS........................................................................................... 120 
Symbolic to numeric .......................................................................................... 121 
Exercises ............................................................................................................ 121 

CHANGING FILE PERMISSIONS................................................................................. 122 
chmod................................................................................................................. 122 
chown................................................................................................................. 123 
chgrp ................................................................................................................ 123 
chown and chgrp................................................................................................ 124 
Default permissions ........................................................................................... 125 

FILE PERMISSIONS AND DIRECTORIES...................................................................... 126 
For example ....................................................................................................... 126 
What happens if? ............................................................................................... 126 

LINKS ..................................................................................................................... 127 
Creating Links ................................................................................................... 128 
Hard and soft links, the differences ................................................................... 129 

SEARCHING THE FILE HIERARCHY........................................................................... 131 
The find command............................................................................................ 131 
Exercises ............................................................................................................ 136 

PERFORMING COMMANDS ON MANY FILES.............................................................. 137 
find and -exec................................................................................................. 137 
find and back quotes....................................................................................... 138 
find and xargs................................................................................................. 138 

CONCLUSION .......................................................................................................... 139 
REVIEW QUESTIONS............................................................................................... 140 

CHAPTER ...................................................................................................... 142 

THE SHELL ....................................................................................................... 142 

INTRODUCTION....................................................................................................... 142 
EXECUTING COMMANDS......................................................................................... 142 

Different shells................................................................................................... 143 
Starting a shell................................................................................................... 143 

PARSING THE COMMAND LINE................................................................................. 144 
THE COMMAND LINE .............................................................................................. 145 

Arguments .......................................................................................................... 145 
One command to a line ...................................................................................... 146 
Commands in the background ........................................................................... 146 

FILENAME SUBSTITUTION ....................................................................................... 147 
Exercises ............................................................................................................ 149 

REMOVING SPECIAL MEANING................................................................................ 149 
INPUT/OUTPUT REDIRECTION.................................................................................. 151 

How it works...................................................................................................... 151 



 

 

File descriptors.................................................................................................. 152 
Standard file descriptors.................................................................................... 152 
Changing direction ............................................................................................ 152 
Using standard I/O ............................................................................................ 153 
Filters................................................................................................................. 153 
I/O redirection examples ................................................................................... 154 
Redirecting standard error ................................................................................ 155 
Evaluating from left to right .............................................................................. 155 

EVERYTHING IS A FILE ............................................................................................ 157 
tty ..................................................................................................................... 157 
Device files......................................................................................................... 157 
Redirecting I/O to device files ........................................................................... 158 

SHELL VARIABLES .................................................................................................. 159 
Environment control .......................................................................................... 159 
The set command.............................................................................................. 159 

USING SHELL VARIABLES........................................................................................ 159 
Assigning a value............................................................................................... 159 
Accessing a variable’s value.............................................................................. 160 
Uninitialised variables....................................................................................... 160 
Resetting a variable ........................................................................................... 160 
The readonly command.................................................................................... 160 
The unset command.......................................................................................... 160 
Arithmetic .......................................................................................................... 161 
The expr command............................................................................................ 161 
Alternatives to expr for arithmetic..................................................................... 162 

VALID VARIABLE NAMES ........................................................................................ 162 
{} ........................................................................................................................ 162 

ENVIRONMENT CONTROL........................................................................................ 163 
PS1 and PS2....................................................................................................... 163 
bash extensions.................................................................................................. 163 

VARIABLES AND SUB-SHELLS ................................................................................. 164 
For example ....................................................................................................... 164 
export ............................................................................................................... 164 
Local variables .................................................................................................. 165 

ADVANCED VARIABLE SUBSTITUTION..................................................................... 165 
EVALUATION ORDER............................................................................................... 166 

Why order is important...................................................................................... 166 
The order ........................................................................................................... 166 

THE EVAL COMMAND............................................................................................. 167 
Doing it twice..................................................................................................... 167 

CONCLUSION .......................................................................................................... 167 
REVIEW QUESTIONS............................................................................................... 168 
INTRODUCTION....................................................................................................... 171 
REGULAR EXPRESSIONS.......................................................................................... 171 

REs versus filename substitution ....................................................................... 172 
How they work ................................................................................................... 174 

REPETITION ............................................................................................................ 174 
CONCATENATION AND ALTERNATION .................................................................... 176 
DIFFERENT COMMANDS, DIFFERENT RES ............................................................... 176 

Exercises ............................................................................................................ 176 



 

 

TAGGING ................................................................................................................ 176 
For example ....................................................................................................... 177 
Exercises ............................................................................................................ 177 

EX, ED, SED AND VI ......................................................................................... 177 
So??? ................................................................................................................. 178 
Why use ed?....................................................................................................... 178 
ed commands ..................................................................................................... 178 
For example ....................................................................................................... 181 
The sed command............................................................................................. 182 
sed command format........................................................................................ 182 

UNDERSTANDING COMPLEX COMMANDS................................................................ 183 
CONCLUSIONS......................................................................................................... 185 
REVIEW QUESTIONS............................................................................................... 185 

CHAPTER  SHELL PROGRAMMING ........................................... 186 

INTRODUCTION....................................................................................................... 186 
Shell Programming - WHY?.............................................................................. 186 
Shell Programming - WHAT?............................................................................ 186 
Shell Programming - HOW? ............................................................................. 187 

THE BASICS............................................................................................................ 187 
A Basic Program................................................................................................ 187 
An Explanation of the Program......................................................................... 189 

ALL YOU EVER WANTED TO KNOW ABOUT VARIABLES........................................ 190 
Why? .................................................................................................................. 191 
Predefined Variables ......................................................................................... 191 
Parameters - Special Shell Variables................................................................ 192 
Only Nine Parameters? ..................................................................................... 194 
Exercise.............................................................................................................. 195 
The difference between $* and $@.................................................................... 195 

THE BASICS OF INPUT/OUTPUT (IO)......................................................................... 196 
AND NOW FOR THE HARD BITS................................................................................ 198 

Scenario ............................................................................................................. 198 
if ... then ... maybe?............................................................................................ 199 
Testing Testing................................................................................................... 200 
Expressions, expressions! .................................................................................. 202 
Exercise.............................................................................................................. 203 
All about case.................................................................................................. 203 
Loops and Repeated Action Commands ............................................................ 204 
while ............................................................................................................... 204 
for .................................................................................................................... 205 
Problems with running scanit ........................................................................ 206 
So what is happening......................................................................................... 208 
Exercises ............................................................................................................ 210 

SPEED AND SHELL SCRIPTS...................................................................................... 210 
What’s the mistake ............................................................................................. 210 
Solution in C ...................................................................................................... 210 



 

 

Shell solution written by C programmer ........................................................... 211 
Shell solution by shell programmer................................................................... 211 
Comparing the solutions.................................................................................... 211 
The problem....................................................................................................... 212 
A solution for scanit?......................................................................................... 212 
Number of processes.......................................................................................... 212 

UNTIL ...................................................................................................................... 213 
break and continue.................................................................................... 214 
Redirection......................................................................................................... 215 

NOW FOR THE REALLY HARD BITS........................................................................... 215 
Functional Functions......................................................................................... 215 
local ............................................................................................................... 216 
The return trip ............................................................................................... 217 

DIFFICULT AND NOT COMPULSORY......................................................................... 217 
Recursion: (see "Recursion") ............................................................................ 217 
wait’ing and trap’ing .................................................................................... 218 

BUGS AND DEBUGGING .......................................................................................... 222 
Method 1 - set.................................................................................................. 223 
Method 2 - echo............................................................................................... 223 
Very Common Mistakes ..................................................................................... 223 

AND NOW FOR THE REALLY REALLY HARD BITS...................................................... 224 
Writing good shell programs............................................................................. 224 
eval the wonderful! ......................................................................................... 225 

STEP-BY-STEP......................................................................................................... 227 
The problem....................................................................................................... 227 
Solving the problem ........................................................................................... 229 
The final program - a listing.............................................................................. 238 

FINAL NOTES........................................................................................................... 239 
REVIEW QUESTIONS............................................................................................... 240 
REFERENCES........................................................................................................... 241 
SOURCE OF SCANIT ................................................................................................. 241 

CHAPTER  USERS..................................................................................... 244 

INTRODUCTION....................................................................................................... 244 
OTHER RESOURCES................................................................................................. 244 
WHAT IS A UNIX ACCOUNT? ................................................................................. 244 

Login names....................................................................................................... 245 
Passwords.......................................................................................................... 246 
The UID ............................................................................................................. 247 
Home directories ............................................................................................... 248 
Login shell ......................................................................................................... 248 
Dot files.............................................................................................................. 248 
Skeleton directories ........................................................................................... 249 
The mail file ....................................................................................................... 250 
Mail aliases........................................................................................................ 250 

ACCOUNT CONFIGURATION FILES........................................................................... 251 



 

 

/etc/passwd ..................................................................................................... 252 
EVERYONE CAN READ /ETC / PASSWD...................................................................... 253 

This is a problem ............................................................................................... 253 
Password matching............................................................................................ 253 
The solution ....................................................................................................... 253 
Shadow file format............................................................................................. 254 

GROUPS.................................................................................................................. 254 
/etc/group ....................................................................................................... 254 

SPECIAL ACCOUNTS................................................................................................ 255 
root.................................................................................................................. 255 
Restricted actions............................................................................................... 256 
Be careful........................................................................................................... 256 

THE MECHANICS..................................................................................................... 256 
Other considerations ......................................................................................... 256 
Pre-requisite Information .................................................................................. 257 
Adding an /etc/passwd entry ...................................................................... 257 
The initial password .......................................................................................... 258 
/etc/group entry .......................................................................................... 258 
The home directory ............................................................................................ 258 
The startup files ................................................................................................. 258 
Setting up mail ................................................................................................... 259 
Testing an account............................................................................................. 259 
Inform the user................................................................................................... 261 

REMOVING AN ACCOUNT ........................................................................................ 261 
Disabling an account......................................................................................... 262 

THE GOALS OF ACCOUNT CREATION...................................................................... 262 
MAKING IT SIMPLE.................................................................................................. 263 
useradd........................................................................................................... 263 
userdel and usermod.................................................................................. 263 
Graphical Tools ................................................................................................. 263 

AUTOMATION ......................................................................................................... 264 
Gathering the information ................................................................................. 264 
Policy ................................................................................................................. 264 
Creating the accounts ........................................................................................ 265 
Additional steps ................................................................................................. 265 
Changing passwords without interaction .......................................................... 265 

DELEGATION .......................................................................................................... 266 
ALLOCATING ROOT PRIVILEGE................................................................................ 266 
sudo.................................................................................................................. 266 
sudo advantages .............................................................................................. 268 
Exercises ............................................................................................................ 268 

CONCLUSIONS......................................................................................................... 268 
REVIEW QUESTIONS............................................................................................... 269 

CHAPTER .............................................................................................. 270 

MANAGING FILE SYSTEMS ................................................................. 270 



 

 

INTRODUCTION....................................................................................................... 270 
What?................................................................................................................. 270 
Why? .................................................................................................................. 270 

OTHER RESOURCES................................................................................................. 271 
A SCENARIO............................................................................................................ 271 
DEVICES - GATEWAYS TO THE KERNEL................................................................... 272 

A device is... ....................................................................................................... 272 
Device files are... ............................................................................................... 272 
Device drivers are.............................................................................................. 272 
/dev.................................................................................................................. 272 
Physical characteristics of device files.............................................................. 274 
Major and minor device numbers are... ............................................................ 275 
Finding the devices on your system................................................................... 275 
Why use device files? ......................................................................................... 277 
Creating device files .......................................................................................... 278 
The use and abuse of device files....................................................................... 279 

DEVICES, PARTITIONS AND FILE SYSTEMS.............................................................. 280 
Device files and partitions ................................................................................. 280 
Partitions and file systems................................................................................. 281 
Partitions and Blocks......................................................................................... 282 
Using the partitions ........................................................................................... 282 
The Virtual File System ..................................................................................... 283 
Dividing up the file hierarchy - why? ................................................................ 284 
Scenario Update ................................................................................................ 285 

THE LINUX NATIVE FILE SYSTEM - EXT2 ............................................................... 285 
Overview ............................................................................................................ 285 
I-Nodes............................................................................................................... 285 
Physical Structure and Features ....................................................................... 287 

CREATING FILE SYSTEMS........................................................................................ 289 
mkfs .................................................................................................................... 289 
Scenario Update ................................................................................................ 289 

MOUNTING AND UN-MOUNTING PARTITIONS AND DEVICES .................................. 290 
Mount................................................................................................................. 290 
Mounting with the /etc/fstab file............................................................... 291 
Scenario Update ................................................................................................ 292 

FILE OPERATIONS................................................................................................... 293 
Creating a file .................................................................................................... 293 
Linking files ....................................................................................................... 293 
ln....................................................................................................................... 294 

CHECKING THE FILE SYSTEM................................................................................... 295 
Why Me? ............................................................................................................ 295 
What to do.......................................................................................................... 295 
fsck.................................................................................................................. 295 
Using fsck....................................................................................................... 296 
What caused the problem?................................................................................. 296 

CONCLUSION .......................................................................................................... 297 
REVIEW QUESTIONS................................................................................................ 297 



 

 

CHAPTER ................................................................................................ 298 

BACKUPS ........................................................................................................... 298 

INTRODUCTION....................................................................................................... 298 
It isn’t just users who accidentally delete files................................................... 298 

OTHER RESOURCES................................................................................................. 298 
BACKUPS AREN’T ENOUGH...................................................................................... 299 
CHARACTERISTICS OF A GOOD BACKUP STRATEGY................................................. 299 

Ease of use ......................................................................................................... 299 
Time efficiency ................................................................................................... 300 
Ease of restoring files ........................................................................................ 300 
Ability to verify backups .................................................................................... 300 
Tolerance of faulty media .................................................................................. 300 
Portabilty to a range of platforms ..................................................................... 301 

CONSIDERATIONS FOR A BACKUP STRATEGY.......................................................... 301 
THE COMPONENTS OF BACKUPS.............................................................................. 302 

Scheduler ........................................................................................................... 302 
Transport ........................................................................................................... 303 
Media ................................................................................................................. 304 

COMMANDS ............................................................................................................ 304 
dump and restore......................................................................................... 305 

USING DUMP AND RESTORE WITHOUT A TAPE............................................................ 307 
Our practice file system..................................................................................... 307 
Doing a level 0 dump......................................................................................... 308 
Restoring the backup ......................................................................................... 309 
Alternative.......................................................................................................... 309 
The tar command............................................................................................. 310 
The dd command ............................................................................................... 312 
The mt command............................................................................................... 313 
Compression programs...................................................................................... 314 
gzip.................................................................................................................. 315 

CONCLUSIONS......................................................................................................... 315 
REVIEW QUESTIONS................................................................................................ 315 

CHAPTER .............................................................................................. 317 

STARTUP AND SHUTDOWN ................................................................. 317 

INTRODUCTION....................................................................................................... 317 
OTHER RESOURCES................................................................................................. 317 
A BOOTING OVERVIEW............................................................................................ 317 
FINDING THE KERNEL............................................................................................. 318 

ROM................................................................................................................... 318 
The bootstrap program...................................................................................... 318 

BOOTING ON A PC .................................................................................................. 319 



 

 

On the floppy...................................................................................................... 319 
Making a boot disk............................................................................................. 319 
Using a boot loader ........................................................................................... 320 

STARTING THE KERNEL........................................................................................... 320 
Kernel boot messages ........................................................................................ 321 

STARTING THE PROCESSES...................................................................................... 322 
Run levels........................................................................................................... 323 
/etc/inittab............................................................................................... 324 

SYSTEM CONFIGURATION....................................................................................... 327 
TERMINAL LOGINS .................................................................................................. 328 
STARTUP SCRIPTS................................................................................................... 328 

The Linux Process.............................................................................................. 329 
WHY WON’T IT BOOT? ............................................................................................. 331 

Solutions ............................................................................................................ 331 
Boot and root disks ............................................................................................ 331 
Making a boot and root disk.............................................................................. 332 
Using boot and root ........................................................................................... 332 

SOLUTIONS TO HARDWARE PROBLEMS.................................................................... 334 
Damaged file systems ........................................................................................ 334 
Improperly configured kernels .......................................................................... 334 

SHUTTING DOWN .................................................................................................... 334 
Reasons Shutting down...................................................................................... 335 
Being nice to the users....................................................................................... 335 

COMMANDS TO SHUTDOWN.................................................................................... 336 
shutdown ........................................................................................................... 337 
What happens..................................................................................................... 337 
The other commands.......................................................................................... 338 

CONCLUSIONS......................................................................................................... 338 
REVIEW QUESTIONS............................................................................................... 338 

CHAPTER .............................................................................................. 340 

KERNEL .............................................................................................................. 340 

THE BIT OF THE NUT THAT YOU EAT? ...................................................................... 340 
OTHER RESOURCES................................................................................................. 340 
WHY? ..................................................................................................................... 341 
HOW? ..................................................................................................................... 342 
THE LIFELESS IMAGE............................................................................................... 342 

Kernel gizzards .................................................................................................. 343 
THE FIRST INCISION................................................................................................. 344 

Making the heart beat... ..................................................................................... 344 
Modules.............................................................................................................. 345 

THE PROC FILE SYSTEM........................................................................................... 346 
REALLY, WHY BOTHER? ......................................................................................... 348 
DOCUMENTATION................................................................................................... 351 
MODIFYING THE KERNEL........................................................................................ 352 
COMPILING THE SOURCE......................................................................................... 353 



 

 

Configuration..................................................................................................... 355 
Dependencies..................................................................................................... 356 
Compilation ....................................................................................................... 356 
Common Problems............................................................................................. 358 

CONCLUSIONS......................................................................................................... 359 
REVIEW QUESTIONS............................................................................................... 360 

CHAPTER .............................................................................................. 361 

AUTOMATION AND OBSERVATION ............................................. 361 

INTRODUCTION....................................................................................................... 361 
OTHER RESOURCES................................................................................................. 361 
AUTOMATION AND CRON......................................................................................... 361 

Components of cron.......................................................................................... 362 
crontab format.................................................................................................. 362 
Creating crontab files ...................................................................................... 364 

CURRENT OBSERVATION ........................................................................................ 364 
df ....................................................................................................................... 365 
du ....................................................................................................................... 365 
System Status ..................................................................................................... 366 

HISTORICAL OBSERVATION.................................................................................... 369 
Managing log and accounting files ................................................................... 370 
Centralise........................................................................................................... 370 
Security .............................................................................................................. 370 
Look at them ...................................................................................................... 371 

LOGGING ................................................................................................................ 371 
syslog ............................................................................................................... 371 

ACCOUNTING.......................................................................................................... 375 
Login accounting ............................................................................................... 375 
last ................................................................................................................... 375 
ac ....................................................................................................................... 376 
Process accounting............................................................................................ 376 
So what?............................................................................................................. 377 

CONCLUSIONS......................................................................................................... 378 
REVIEW QUESTIONS............................................................................................... 379 

CHAPTER .............................................................................................. 380 

NETWORKS: THE CONNECTION ..................................................... 380 

INTRODUCTION....................................................................................................... 380 
OTHER RESOURCES................................................................................................. 380 
THE OVERVIEW ...................................................................................................... 381 

What you need.................................................................................................... 381 
What you do ....................................................................................................... 382 



 

 

TCP/IP BASICS....................................................................................................... 382 
Hostnames.......................................................................................................... 383 
hostname ........................................................................................................ 384 
Qualified names................................................................................................. 384 
IP/Internet Addresses......................................................................................... 385 

THE INTERNET IS A NETWORK OF NETWORKS.......................................................... 386 
Exercises ............................................................................................................ 390 
Name resolution................................................................................................. 390 
Routing............................................................................................................... 393 
Exercises ............................................................................................................ 394 
TCP/IP Basics Conclusion ................................................................................ 394 

NETWORK HARDWARE ........................................................................................... 395 
Network devices ................................................................................................. 395 
Ethernet.............................................................................................................. 396 
Converting hardware addresses to Internet addresses ..................................... 397 
SLIP, PPP and point to point ............................................................................ 398 

KERNEL SUPPORT FOR NETWORKING...................................................................... 399 
CONFIGURING THE CONNECTION............................................................................. 401 

The Configuration Process................................................................................ 401 
Configuration Related Tools and Files.............................................................. 402 
Configuring the device/interface ....................................................................... 402 
Configuring the name resolver .......................................................................... 403 
Configuring routing........................................................................................... 405 

NETWORK “MANAGEMENT” TOOLS ........................................................................ 408 
RedHat GUI Networking Tools ......................................................................... 408 
nslookup ........................................................................................................... 409 
netstat................................................................................................................. 409 
traceroute ....................................................................................................... 410 

CONCLUSIONS......................................................................................................... 411 
REVIEW QUESTIONS............................................................................................... 412 

CHAPTER .............................................................................................. 414 

NETWORK APPLICATIONS .................................................................. 414 

INTRODUCTION....................................................................................................... 414 
OTHER RESOURCES................................................................................................. 414 
HOW IT ALL WORKS ................................................................................................ 415 
PORTS..................................................................................................................... 415 

Reserved ports ................................................................................................... 416 
Look at ports, netstat................................................................................... 417 

NETWORK DAEMONS.............................................................................................. 418 
How network daemons start .............................................................................. 418 
inetd ................................................................................................................... 419 
How it works...................................................................................................... 420 

NETWORK CLIENTS................................................................................................. 420 
The telnet client.................................................................................................. 420 

NETWORK PROTOCOLS............................................................................................ 421 



 

 

Request for comment (RFCs)............................................................................. 421 
Text based protocols .......................................................................................... 422 
How it works...................................................................................................... 422 
Exercises ............................................................................................................ 423 

SECURITY ............................................................................................................... 424 
TCPWrappers/tcpd ............................................................................................ 424 
The difference .................................................................................................... 424 

WHAT’S AN INTRANET?........................................................................................... 426 
Services on an Intranet ...................................................................................... 426 

FILE AND PRINT SHARING........................................................................................ 427 
Samba ................................................................................................................ 427 

EMAIL ..................................................................................................................... 429 
Email components.............................................................................................. 429 
Email Protocols ................................................................................................. 430 
Exercises ............................................................................................................ 432 

WORLD-WIDE WEB................................................................................................ 432 
CONCLUSIONS......................................................................................................... 432 
REVIEW QUESTIONS............................................................................................... 433 
LOCAL INTRODUCTION........................................................................................... 434 
LINUX SECURITY HOWTO..................................................................................... 434 
INTRODUCTION....................................................................................................... 434 

New Versions of this Document......................................................................... 435 
Feedback............................................................................................................ 435 
Disclaimer.......................................................................................................... 435 
Copyright Information....................................................................................... 435 

OVERVIEW.............................................................................................................. 436 
Why Do We Need Security?............................................................................... 436 
How Secure Is Secure? ...................................................................................... 436 
What Are You Trying to Protect? ...................................................................... 437 
Developing A Security Policy ............................................................................ 438 
Means of Securing Your Site.............................................................................. 438 
Organization of This Document......................................................................... 439 

PHYSICAL SECURITY............................................................................................... 440 
Computer locks .................................................................................................. 440 
BIOS Security..................................................................................................... 441 
Boot Loader Security ......................................................................................... 441 
Detecting Physical Security Compromises........................................................ 442 

LOCAL SECURITY.................................................................................................... 443 
Creating New Accounts ..................................................................................... 443 
Root Security...................................................................................................... 443 

FILES AND FILESYSTEM SECURITY.......................................................................... 445 
Umask Settings................................................................................................... 446 
File Permissions ................................................................................................ 447 
Integrity Checking with Tripwire Tripwire........................................................ 449 
5.4.  Trojan Horses ............................................................................................ 450 

PASSWORD SECURITY AND ENCRYPTION................................................................ 450 
PGP and Public-Key Cryptography .................................................................. 451 
SSL, S-HTTP, HTTPS and S/MIME................................................................... 452 
Linux IPSEC Implementations........................................................................... 452 
ssh  (Secure Shell) and stelnet ........................................................................... 453 



 

 

PAM - Pluggable Authentication Modules ........................................................ 454 
Cryptographic IP Encapsulation (CIPE) .......................................................... 454 
Kerberos ............................................................................................................ 455 
Shadow Passwords. ........................................................................................... 455 
“Crack" and "John the Ripper"......................................................................... 456 
CFS & TCFS: Cryptographic File Systems....................................................... 456 
X11, SVGA and display security........................................................................ 456 

KERNEL SECURITY ................................................................................................. 457 
2.0 Kernel Compile Options .............................................................................. 457 
2.2 Kernel Compile Options .............................................................................. 459 
Kernel Devices................................................................................................... 460 

NETWORK SECURITY .............................................................................................. 461 
Packet Sniffers ................................................................................................... 461 
System services and tcp_wrappers .................................................................... 461 
Verify Your DNS Information ............................................................................ 462 
identd ................................................................................................................. 463 
SATAN, ISS, and Other Network Scanners........................................................ 463 
Detecting Port Scans ......................................................................................... 464 
sendmail , qmail  and MTA's ............................................................................. 464 
Denial of Service Attacks................................................................................... 465 
NFS (Network File System) Security. ................................................................ 466 
NIS (Network Information Service) (formerly YP). ........................................... 466 
Firewalls ............................................................................................................ 466 
IP Chains - Linux Kernel 2.2.x Firewalling ...................................................... 467 
VPN's - Virtual Private Networks...................................................................... 467 

SECURITY PREPARATION (BEFORE YOU GO ON-LINE).............................................. 468 
Make a Full Backup of Your Machine............................................................... 468 
Choosing a Good Backup Schedule................................................................... 468 
Backup Your RPM or Debian File Database .................................................... 468 
Keep Track of Your System Accounting Data.................................................... 469 
Apply All New System Updates.......................................................................... 470 

WHAT TO DO DURING AND AFTER A BREAKIN ...................................................... 470 
Security Compromise Underway. ...................................................................... 470 
Security Compromise has already happened .................................................... 471 

SECURITY SOURCES................................................................................................ 473 
FTP Sites............................................................................................................ 473 
Web Sites............................................................................................................ 473 
Mailing Lists ...................................................................................................... 474 
Books - Printed Reading Material ..................................................................... 474 

GLOSSARY.............................................................................................................. 474 
FREQUENTLY ASKED QUESTIONS........................................................................... 475 
CONCLUSION .......................................................................................................... 477 
ACKNOWLEDGEMENTS........................................................................................... 477 



 

 

Forward 

The fourth edition of this text sees quite a few updates and additions.  
Hopefully it also sees the start of a more collaborative process for the 
development of the text.  In recognition of the fact that one person, with other 
things to do, simply can’t maintain a book such as this I am setting up a 
number of methods which you can contribute to this book via the 85321 
website (http://infocom.cqu.edu.au/85321/).   

Those contributions have already started including 

• Bruce Jamieson, one of the very first 85321 students, was responsible for 
most of the content in chapters 4, 8, 10 and 13.  Bruce’s original work has 
since been touched up slightly to keep up with the changing face of Linux. 

• Chapter 17 of the text is now a copy of the Linux Security HOWTO by 
Kevin Fenzi and Dave Wreski. 

• Janet Jackson has kindly allowed the reuse of one of her articles in the 
SAGE-AU newsletter in chapter 1. 

• There are also a number of documents which have been quoted and/or 
referenced throughout the text. 

While the above are the direct contributions there are many people who have 
made indirect contributions to the development of this text including the 
people behind the LDP and other available Linux documentation, the authors 
of the many books I’ve read over the years and the people who read this text 
and provide feedback and suggestions. 

Please, if you find an error (no matter how simple), find an explanation not 
particularly helpful or have a suggestion for an addition to the text please visit 
the website and participate. 

This participation is particularly important given that there are certain to be 
errors introduced in this edition.  The additions were done quickly with a 
minimum of proof-reading so please report them if you find them. 

 

 

David Jones 

http://cq-pan.cqu.edu.au/david-jones/ 



85321, Systems Administration Chapter 0:   The Overview 

David Jones (20.01.00)          Page 18 

Chapter
The Overview 

Introduction 
Welcome to Chapter 0.  Yes, I know it is a strange numbering scheme but this 
chapter is being added early in 2000 and it is quicker to call it Chapter 0 rather 
than call it Chapter 1 and then have to renumber all the remaining chapters 
which have been in the text for a few years. 

The inclusion of this chapter is due to feedback from previous students in 
85321, Systems Administration.  It is an attempt to give you an overview of 
the course and more importantly of computing, Linux and Systems 
Administration.   

Many students have commented that they have felt lost in the detail of Linux 
without any idea of how it all fits together.  Hopefully this chapter will go 
some way towards solving this problem.  Hopefully it will provide some sort 
of small map and compass so you have some idea of where you are and where 
you are going. 

I am always keen and willing to hear feedback about this text.  If you have 
useful suggestions please feel free to make them via the various mechanisms 
which are available on the 85321 website, http://infocom.cqu.edu.au/85321/ 

This chapter will discuss the following 

• the course 
A brief overview of 85321 and why it is the way it is.  This will also 
include an introduction to the material we will cover this term. 

• the course material 
A really quick explanation of how the 85321 CD-ROM, Website, textbook 
and other material all fits together (at least how I hope it will). 

• solving your problems 
There is one thing both you and I can be sure of this term.  At some stage 
you will have problems with Linux or 85321.  This section will provide 
some hints and tips on how you should go about solving these problems. 

• Computers 
Those of you who have not read widely or have experience within the 
computing industry will think that computing starts and stops with single, 
stand-alone Windows computers.  This couldn’t be further from the truth.  
This section attempts to give you some idea of at least one version of what 
is out there. 

• Linux 
Last but not least the chapter provides a quick overview of Linux, how it 
works and some of the important concepts you will learn about during this 
course.   



85321, Systems Administration Chapter 0:   The Overview 

David Jones (20.01.00)          Page 19 

Other  Resources 
All of the chapters in this text will have a section called Other Resources near 
the start of the chapter.  The idea is to point you to other resources which 
discuss related material.  The 85321 website will maintain a more up to date 
list of resources which will include comments from people about those 
resources and a space where you can contribute comments and provide 
pointers to resources you found useful. 

One of the most common references will be to the Linux Documentation 
Project (the LDP).  The LDP is a collaborative project by many people 
throughout the Linux community to develop high quality documentation about 
the Linux system.  A mirror of the LDP website is included on the 85321 
website/CD-ROM. 

Other resources which discuss similar material to this chapter includes 

• Online lectures 1, 2 and 3 on the 85321 Website discuss some of the same 
information covered here.  Though some of the information may be a touch 
old. 

• HOWTOs 
These are “smallish” which provide guidance on a particular topic.  One 
HOWTO which covers similar material to this chapter is the UNIX and 
Internet Fundamentals HOW-TO 

• Guides 
The LDP also includes a number of guides that are essentially full-blown 
books (or very close to it).  The Linux and Installation and Getting Started 
Guide contains some good overview material.  The Overview of a Linux 
System from the Linux Systems Administration Guide is also useful.  As is 
the Linux Overview section from the Linux Administration Made Easy 
Guide (LAME). 

 The Course 
You can get some idea of what 85321, Systems Administration, and to some 
extent a career as a Systems Administrator from the following poem written by 
a past 85321 student. 

 Lament of a Linux Student  

                     Here I sit broken hearted 

                     Loaded X-Windows and 

                     can't get it started 

                     Off I go in a Tizzy 

                     Looks as though tomorrow I'm busy 

I can guarantee that most students will at some stage be frustrated, annoyed, 
depressed and entirely sick of 85321, Linux and anyone responsible for it.  
This can also be said for a career in Systems Administration. 



85321, Systems Administration Chapter 0:   The Overview 

David Jones (20.01.00)          Page 20 

Many of you may have heard of 85321 from other students and others may 
well have drawn some conclusions based on your previous experiences in 
courses I have taught.  Hopefully many of them (the bad ones hopefully) won’t 
apply.  The experience of past students in this course can be summarised as 
follows, 85321 is 

• enjoyable 

• very practical 

• a lot of work  

Hopefully this year you will find the emphasis more on the first two rather than 
the last one.  There have been a lot of changes made to 85321 for the year 
2000.  Most have been implemented to reduce the amount of work, increase 
the enjoyment and make sure that someone who passes 85321 actually knows 
something about Systems Administration and Linux. 

The rationale 

Why is the course the way it is?  There are lots of reasons which contribute but 
the main ones are 

• You need to learn about Systems Administration.  
Systems Administration is an essential task, especially given the increasing 
importance of computers.  Systems Administration is difficult.  Software 
and untrained people can’t be Systems Administrators.  Knowing about 
Systems Administration will make you a better programmer and computing 
professional, even if you don’t find employment as a Systems 
Administrator. 

• People only learn by doing. 
Sure you might be able to recite back to me a whole bunch of facts, 
commands and concepts and probably even pass an exam.  But you won’t 
know how to be a Systems Administrator.  To do this you have to 
experience it. 

The last point cannot be emphasised enough.   You will learn nothing from this 
book and course by simply reading about it.  You have to get in and get your 
hands dirty playing around. 

What you will learn 

The aim of 85321 is to introduce you to the task of Systems Administration, 
looking after and maintaining complex computer systems. In particular, 85321 
aims to produce students who meet the requirements of a Junior Systems 
Administrator as outlined in the SAGE Job Description booklet (without the 1 
or 2 years experience).   You can find an excerpt from the Job Description 
booklet on the 85321 website (http://infocom.cqu.edu.au/85321/). 

Figure 0.1. provides a graphical representation of the topics introduced in 
85321.   



85321, Systems Administration Chapter 0:   The Overview 

David Jones (20.01.00)          Page 21 

 
F i g u r e  0 . 1 .  

A n  O v e r v i e w  o f  t h e  C o n t e n t  o f  t h i s  B o o k .  

For the first eight chapters of this book we concentrate on the foundations, 
basic UNIX.  You need to become familiar with basic concepts such as UNIX 
commands, shells, and regular expressions before you can progress to the 
“real” Systems Administration topics.  All of these foundation concepts will be 
reused later in the book. 

The next remaining concepts are covered in chapters 9 through 17 

• Users and account management 
People have to be able to use the systems you manage.  Chapter 9 examines 
the issues involved with this on a Linux system. 

• File systems and Backups 
People use a computer in order to store and manipulate data.  That data has 
to be stored somewhere.  Chapters 10 and 11 examine how Linux stores 
data on hard-drives and how you can perform backups to tape. 

• Startup and Shutdown 
Operating systems such as Linux and Windows NT are not simple systems.  
The process to start them up and shut them down is quite complex and 
problems can arise.  Chapter 12 examines the Linux startup and shutdown 
process. 

• Kernel 
Many of the services provided by a computer are implemented in the 
kernel of the operating system.  Chapter 13 examines how to configure, 
compile and install the Linux kernel. 

• Automation and Observation 
Once your computer is up and running you need to be able to automate 
tasks and observe what is going on.  Chapter 14 examines how to achieve 
these two tasks on a Linux computer. 



85321, Systems Administration Chapter 0:   The Overview 

David Jones (20.01.00)          Page 22 

• Network 
Without a network connection and network services most modern 
computers are considered useless.  Chapters 15 and 16 examine how to 
connect, configure and use a Linux computer on a network. 

• Security 
Ensuring that your computer and its contents is safe from prying eyes is an 
essential part of any Systems Administrators job.  Chapter 17 provides an 
overview of security on a Linux system. 

All these concepts are essential to Systems Administrators regardless of the 
type of operating system they are using.  Someone managing a Windows NT 
system still needs to ensure the security of the system, connect it to a network, 
configure it for new drivers and keep an eye out on what is happening. 

Why not NT? 

A very common question from 85321 students is why are we using Linux?  
Why aren’t we using NT.   Here are some of my answers to those questions. 

• It is not cheap 
It costs money to distribute NT to the couple of hundred students doing 
85321 in three or four countries.  A lot more money than it does to 
distribute Linux. 

• it is not complete 
Adding to the cost is that when you get NT you don’t get a real Web server, 
database and a bunch of other important software. 

• it hides its complexity 
Windows NT is supposed to be easy to administer.  After all it is all GUI 
based.  That isn’t an argument there are similar GUI based tools for 
managing UNIX boxes.  The problem with GUIs, especially when you are 
learning about systems, is that GUIs hide how things work.  As a Systems 
Administrator you need to know how things work.  You don’t need to know 
that to get it to work you press that button on that dialog box.  A trained 
monkey can work that out. 

• it is closed 
NT is Microsoft’s.  They own it.  They make the rules.  If they are unhappy, 
the change NT.  Linux is owned by a community of people who work 
together to make it better.   

• if you learn Linux you can learn NT 
Lastly, if you can learn the material in this textbook.  Learning how to 
administer an NT computer is no great difficulty. 

Course Mater ial 
For 85321 you will (should) have access to this textbook, an 85321 CD-ROM 
and the 85321 Website.  This section gives a brief overview of the 
relationships between this material. 



85321, Systems Administration Chapter 0:   The Overview 

David Jones (20.01.00)          Page 23 

Textbook 

This book provides most of the reading and exercises you will need for 85321.  
You should end up reading most of it.  Electronic copies of the text are 
available on the 85321 website.  You can purchase copies of it from the CQU 
bookshop. 

There are a couple of older chapters from this text which are not included with 
the print version.  They are available from the 85321 website/CD-ROM. 

85321 CD-ROM 

The 85321 CD-ROM will contain a mirror of the 85321 Website.  The main 
use of this CD-ROM is to provide quick access to the website material without 
requiring you to connect to the Internet. 

There most useful parts of the 85321 CD-ROM are expected to be 

• the online lectures  
Recorded early in 1999 these online lectures cover the first 5 or 6 weeks of 
the semester and include audio. 

• the Linux Documentation Project mirror 
The LDP is the main source for Linux information.  Copies of most of the 
LDP information is available on the CD-ROM. 

The 85321 CD-ROM does not contain a copy of Linux.  To install Linux you 
will need a separate CD. 

The 85321 CD-ROM is available for purchase from the CQU bookshop. 

85321 Website 

It is intended that the 85321 website will be the primary site for interaction and 
information exchange.  The 85321 website should always have the most up to 
date copies of information. 

The 85321 website will also have a number of features which will enable you 
to make contributions to improving the site and the unit.  Please take the time 
to visit and become familiar with the website and its features.  The URL is 

           http://infocom.cqu.edu.au/85321/ 

Solving Problems 
Students enrolled in 85321 will be nearing the end their degree.  It won’t be to 
long until you are computer professionals being employed to do work with 
computers.  When you are a computer professional you will not be able to ask 
the lecturer how to do something.  You will need to know how to solve the 
problem yourself, to work it out. 

If there is one thing I hope you learn from 85321 it is the ability to solve your 
own problems. 



85321, Systems Administration Chapter 0:   The Overview 

David Jones (20.01.00)          Page 24 

Chapter 2 of this textbook offers more details about how you should go about 
solving problems.  Please refer to it. 

Computers in the Real Wor ld 
Chances are most of your experience with computers are with Wintel PCs 
(computers with Intel CPUs running various versions of the Windows 
operating system).  As with most people your past experience colours your 
beliefs.  Out in the "real world" (a term I will use throughout the book to refer 
to largish organisations) there is a lot more to computers than Wintel 
computers with a single monitor, CPU and keyboard.   

It is hoped that this section will introduce you to some of the differences you 
can expect to experience when you enter the "real world".   

What you think computers are 

Chances are you think computers have one monitor, one CPU, some RAM, a 
keyboard, a printer, a couple of other perhiperals and maybe a network 
connection.  To use the computer you sit down in front of it,  

• Turn it on. 
As a result the computer finds some boot information on one of the drives. 
Loads the kernel of the operating system you use, configures the machine 
and starts up some other software services. 

• Get presented with a GUI interface, i.e. Windows, on the monitor. 

• Do stuff by double clicking on icons and the like. 
As a result the computer loads programs from file and executes them using 
your computer’s CPU and displays the results on the monitor. 

• You might be able to connect to a network drive. 
The network drive might contain data or maybe some programs which you 
can run using the CPU of your computer. 

• When you are finished you turn the computer off. 

Some alternatives 

This isn’t the way it is always.  There are computers which differ on any one of 
the above assumptions.  The following introduces you to some of them. 

No heads 

There are situations where computers can have no monitors at all (often 
referred to as headless computers).  For example the servers produced by 
Cobalt Networks (http://www.cobalt.com/) which provide file, print and web 
serving capabilities are essentially blue boxes with a power and network 
connection.  These servers don’t have any peripherals connected to them at all.  
All management is done via the network.  Most multimedia developers will 
work with two monitors.  One which has all their "code" and development 
work, another which shows the end product. 



85321, Systems Administration Chapter 0:   The Overview 

David Jones (20.01.00)          Page 25 

No Graphical User Interface (GUI) 

GUIs (graphical user interfaces) such as Windows are resource hogs.  Running 
a GUI takes more RAM and larger CPUs than running a text-based command 
line.  With Windows NT you have to run the GUI.  With UNIX you can chose 
to run a GUI or a command line.  Since UNIX isn’t’ burdened by a GUI a much 
smaller machine can run Linux and do the same job as a larger WinNT 
machine. 

More CPUs 

Most personal computers have a single CPU.  It is not fairly common for 
largish network servers to have at least 2 or maybe 4 CPUs.  The SUN HPC 
10000 (http://www.sun.com/servers/hpc/products/hpc10000.html) will support 
up to 64 CPUs, 64Gb of RAM and over 64 Terabytes of disk space.  Clustering 
technology, such as Beowulf (http://www.beowulf.org/),  allows you to 
connect multiple personal computers together as a network and treat them as a 
single computer. 

No disks 

Managing a large network of computers where users can modify information 
on the hard-drive can be a lot of work.  People make changes, people make 
mistakes, Systems Administrator must fix mistake.  One solution to this is not 
to allow people to make changes.  In some cases the machines don’t even have 
disks.  All the information and programs there computer uses comes from the 
disks of another computer.  In the early 90s some Postscript printers actually 
had more computing power than the personal computers which were sending 
them print jobs. 

Loading programs from a disk on another computer and running them on your 
own computer is common to both diskless workstations and also to most 
Windows users.  It is common in companies to use a large disk connected to a 
server for central applications.  You want to run Word, well you connect to the 
network drive that contains Word and run it.  The CPU in your machine does 
the work executing Word but loads it from a network disk. 

Sharing CPUs 

UNIX is a true multi-user operating system in the sense that someone on 
another computer can log onto my computer and run programs.  In this 
situation it is the CPU of my computer (hopefully a large server) which runs 
the program while the new person’s computer takes care of handling the input 
and output.  Under UNIX this can be achieved using telnet for text based 
programs (this feature is available under Windows) and using features of the X 
Windows system for GUI-based programs. 

But alas all is not lost.  Virtual Network Computing (VNC) 
http://www.uk.research.att.com/vnc/ is freely available and provides a similar 
capability for Windows and Mac computers.  In fact, it allows any UNIX, 
Windows, Mac computer to run applications on any UNIX, Windows Mac 



85321, Systems Administration Chapter 0:   The Overview 

David Jones (20.01.00)          Page 26 

computer and have the output appear on the original computer.  It even allows 
the same effect to be achieved via any Web browser which supports Java. 

Multiple operating systems, one at a time 

Up until this course most of you will have been using a single operating system 
on your computer.  It is possible to have more than one operating system on 
the one computer.  The standard approach to achieving this is placing each 
operating system on its own partition and when you first turn the computer on 
choosing which operating system you want to run, e.g. WinNT, Linux or 
Win98.   

With the standard configuration you cannot have more than one operating 
system running at any one time.  Mainly due to the fact that the operating 
system provides the interface between the hardware and user programs.  So 
each operating system takes over the hardware.  Operating systems have not 
been able to watch Sesame Street to learn how to share. 

Running programs from one operating system on another 

Usually you cannot run a Windows NT program on a computer running Linux 
computer or a Linux program on a computer running Windows NT.  However, 
there are are “systems” which aim to allow you to achieve this.  The most 
common under Linux is the Wine system (http://www.winehq.com/) which 
allows you to run Windows binaries under Linux. 

Multiple operating systems at the same time 

In some instances you have to have access to more than one operating system.  
The above three solutions are workable but have their drawbacks.  Using a 
system like VNC means that you need to have more than one computer. 
Running multiple operating systems, one at a time, means you have to reboot 
your computer to change operating systems.  The WINE approach isn’t quite 
ready for prime-time use. 

An alternative approach is provided by VMware (http://www.vmware.com/).  
VMware provides software which supplies a virtual machine on which you can 
run other operating systems within other operating systems.  For example, 
using VMware for Linux you can run a copy of Windows NT on the VMware 
virtual machine and then run any Windows application at the same time as 
running Linux and Linux applications. 

An Overview of L inux 
The research literature into education is full of discussion about the advantages 
of mental models provide towards making learning easier.  The idea is that you 
can only really learn or know something if you build a correct model of the 
concept you are  learning about in your mind.  In other words, you will find 
85321, Systems Administration and Linux much easier if you have a good idea 
of how Linux and its various components all work.  Hopefully the following 
will aid you in achieving this goal. 



85321, Systems Administration Chapter 0:   The Overview 

David Jones (20.01.00)          Page 27 

To achieve this goal the section will be divided into four sections 

• booting 
Which describes what happens when a Linux machine boots.  "Boots" is 
just computer jargon for starting up.  Chapter 12 of the text explores the 
boot process in more detail. 

• running 
Once a Linux computer has booted it enters another phase, the running 
phase.  This section looks at the various parts of the Linux operating 
system and supporting tools which enable a Linux computer to "run". 

• Shutting down 
This section completes the circle.  At some stage you will want to turn the 
Linux computer off.  This section describes what happens when you shut it 
down. 

• The layers 
Much of the content and concepts introduced in this text will fall into one 
of a number of layers.  This section outlines those layers and offers a brief 
explanation. 

Booting 

When you turn a Linux computer on the following happens (similar steps 
happen for Windows NT and other types of computer) 

• it executes instructions contained within some read only memory (ROM) 

• this usually results in the computer looking in a few places on disks for a 
boot sector 

• the computer loads the boot sector and executes the instructions contained 
in that boot sector 

• these instructions generally load the Linux kernel 

• the Linux kernel checks the available hardware, attempts to configure it 
and then starts up two processes, swap and init 

• the init  process then starts executing a bunch of shell scripts contained in 
the /etc/rc.d  directory 

• the startup scripts perform various configuration steps and start a number 
of daemons 

At this stage your Linux computer is running.  It is usually in one of a number 
of run levels.   

At any one of these stages problems can occur which cause problems.  For 
example, a corrupt boot sector will mean it can’t be executed, a kernel which is 
incompatible with the installed hardware will not be able to use that hardware.  
As a Systems Administrator you will be responsible for diagnosing and fixing 
these problems. 



85321, Systems Administration Chapter 0:   The Overview 

David Jones (20.01.00)          Page 28 

Running 

Once the computer is up and running you need to start using it.  You will need 
some type of interface to issue commands to the computer and see the results.  
At the most general level Linux has to types of interface 

• text interface 
A simple command-line interface is provided by a variety of shells which 
allow you to enter commands via the keyboard.  This is the original 
interface to UNIX. 

• A graphical interface 
Linux comes with X Windows which provides all the functionality and 
features required to implement a graphical user interface (GUI). 

The GUI provided by X Windows is significantly more flexible than that of 
Windows or the Mac. 

The commands or programs you execute are all stored on disk in files.  Rather 
than stick all those files in together they are separated out using directories.  
File and directory mean much the same sort of thing as document and folder.  
Chapters 4, 5 and 10 provide more information about how information is 
stored in files and directories and the commands you can use to manipulate 
them. 

There are a large number of functions which are common to a lot of programs.  
For example, opening a Window in a GUI, print some text and opening a file.  
Rather than have every program write their own code to do this Linux comes 
with a large collection of libraries.  These libraries are stored in common 
locations (e.g. the directories lib /usr/lib and others) and are referred to when 
needed.   

The operating system provides a number of low level tasks such as memory 
management, CPU management, device drivers and the like.  Programming 
libraries provide the executable code to perform slightly higher level tasks 
required by other programs, such as printing to the screen.  Services such as 
logging onto the system, handling network connections or running the startup 
scripts are performed by daemons. 

A daemon is simply a program.  It gets started up, usually by the startup scripts 
when the computer starts, and then sits around waiting for some interesting 
event to occur.  When that event occurs it examines the event performs some 
appropriate task and then goes back to sleep.   

There are a large number of daemons on a UNIX system and a fair amount of 
Systems Administration is dealing with the management and configuration of 
daemons.  This could be quite complex.  Thankfully all daemons behave much 
the same.  They generally all have 

• a configuration file 
Under UNIX most configuration files are text-based.  This is good because 
text is easy to edit and manipulate with normal text processing tools.  The 
configuration file essentially tells the daemon what to do, when and 
sometimes how.  The first thing a daemon will do is read its configuration 



85321, Systems Administration Chapter 0:   The Overview 

David Jones (20.01.00)          Page 29 

file.  If you change the configuration file you have to tell the daemon to 
take another look at the configuration file either by stopping and restarting 
it or sending it a signal (more on these later) 

• An executable program  
This is the daemon.  The thing which is started and then listens for 
interesting events. 

• A log file 
As the daemon performs tasks it will normally record what it is doing in a 
log file.  This allows the Systems Administrator to find out what happened.  
It is also the primary tool for figuring out what went wrong. 

Processes, programs in execution, perform all work on a UNIX system.  A 
process is essentially a bunch of operating system data structures, code and 
data.  The data structures for each process keep a track of the identity of the 
person who ran the process (in the process’ user id).  The process will only be 
allowed to perform tasks that the process’ owner has been allocated.   

There is one person (account), the root account, which can do anything 
because permissions are not checked for root.  The root account is usually only 
available to the Systems Administrator.  The lack of control placed on the root 
account means that it is not a good idea to be using the root account to perform 
normal tasks. 

Shutting down 

You can't simply turn a UNIX, or for that matter any reasonably complex, 
computer off.  You have to let it have time to tidy up and finish various tasks 
so it can shutdown in a safe state. 

The shutdown process involves the init daemon, the same daemon involved 
in the startup process, executing a number of shell scripts to safely close down 
the services it started during the boot process. 

Layers 

A computer system, especially one running Linux, can be though of containing 
a number of different layers including 

• Hardware 
At the lost levels is the physical equipment that provides the basic 
functionality required for the system to perform.  At various stages you will 
be adding or removing hardware from your system. 

• Device drivers 
The next step up are the device drivers that form part of the Linux kernel.  
These devices drivers are essentially programs that know how to 
communicate with specific devices.  If you want to use a particular piece of 
hardware you must have an appropriate device driver included with the 
kernel of your system. 

• Other kernel services 
The kernel also provides a number of slightly higher-level services that 



85321, Systems Administration Chapter 0:   The Overview 

David Jones (20.01.00)          Page 30 

have little to do with talking directly with hardware.  Examples include 
CPU scheduling, memory management and file systems.  If you want your 
Linux system to be able to read Windows-98 floppy disks then certain 
services are required to be included with your kernel. 

• Device files 
Outside, but closely related to device drivers, are device files.  Device files 
provide a standard interface to devices.  This common interface is often 
used by processes from the next two layers to communicate with the 
device.  Device drivers are little more than translators between the 
hardware device and the Linux device file interface.  No device file often 
means you can’t use the device, even if you have an appropriate device 
driver. 

• Daemons 
As introduced earlier daemons are processes that start and then wait some 
event to occur.  Daemons are often used to implement system level services 
such as starting up the Linux system and allowing people to log on to your 
Linux system. 

• User programs 
At the top level are the user programs.  These user programs make use of 
the services provided by daemons, device files and other kernel services to 
perform tasks required by people.  Some of these user programs provide 
the interface people use, e.g. shells and the X-Window system. 

What’s the use of all these layers?  Why should I bother understanding them?  
Well it makes it much easier to identify and fix the problem.  Working your 
way up the layers (from hardware up to user programs) can often be a good 
approach to solving problems. 

For example, let’s assume I have been unable to connect to my Linux 
computer over the network.  How can I identify and solve the problem 

• Hardware 
First step is to make sure the hardware is working.  For example, is the 
network connector plugged in, is the Linux computer turned on, can I 
connect to other similarly located computers. 

• Device drivers 
Does the kernel on the Linux system contain the appropriate device drivers 
for the network hardware I am using. 

• Kernel services 
Are the kernel services required to connect to remote computers correctly 
installed and configured?  Are other similar network services working? 

• Device files 
Do the appropriate devices exist?  Have they been configured correctly? 

• Daemons 
Do the log files of the associated daemons show any errors?  Is the required 
daemon executing? 

And so on.  Hopefully you get the idea of slowly progressing up the layers 
enables you to rule out possibilities. 



85321, Systems Administration Chapter 0:   The Overview 

David Jones (20.01.00)          Page 31 

Hopefully the remainder of this text will provide you with the information 
necessary to now which kernel services are associated with which features of 
Linux. 

Conclusions 
Computing is a large field with many different tasks implemented with a 
plethora of approaches.  This chapter has provided a small list of some of the 
possibilities.  These aren’t the only ones and there are sure to be some new 
ones developed.  As a computing professional you need to be aware of the 
possibilities. 

You will only learn Systems Administration by doing Systems Administration.  



85321, Systems Administration Chapter 1: The What, Why and How of Sys Admin 

David Jones (20.01.00) Page 32 

Chapter 
The What, Why and How of Sys Admin 

A beginning is the time for taking the most delicate care that the balances 
are correct. 

-- Frank Herbet (Dune) 

Introduction 
Systems Administration is one of the most complex, fulfilling and 
misunderstood professions within the computing arena.  Everybody who uses 
the computer depends on the Systems Administrator doing their job correctly 
and efficiently.  However the only time users tend to give the Systems 
Administrator a second thought is when the computer system is not working.  
A broken computer system implies some fault on the part of the Systems 
Administrator.. 

Very few people, including other computing professionals, understand the 
complexity and the time-consuming nature of Systems Administration.  Even 
fewer people realise the satisfaction and challenge that Systems Administration 
presents to the practitioner.  It is one of the rare computing professions in 
which the individual can combine every facet of the computing field into one 
career (including programming). 

The aim of this chapter is to provide you with some background to Systems 
Administration so that you have some idea of why you are reading this and 
what you may learn via this text. 

What Systems Administrators do 
Systems Administration is an old responsibility gaining new found importance 
and acceptance as a profession.  It has come into existence because of the 
increasing complexity of modern computer systems and networks and because 
of the economy’s increasing reliance on computers.  Any decent size business 
now requires at least one person to keep the computers running happily.  If the 
computers don’t work the business suffers.  Smaller companies will don’t have 
the size to support a full-time Systems Administrator and will likely share one 
(usually some form of consultant) amongst a number of other companies. 

It can be said that Systems Administrators have two basic reasons for being 

• ensuring that the computing system runs correctly and as efficiently as 
possible, and 

• ensuring that all users can and do use the computing system to carry out 
their required work in the easiest and most efficient manner. 

People who have studied operating systems may remember these two reasons 
as being similar to the responsibilities of operating systems.  You may also 



85321, Systems Administration Chapter 1: The What, Why and How of Sys Admin 

David Jones (20.01.00) Page 33 

remember from operating systems that  these two responsibilities often conflict 
with one another.  

Users will want things a specific way which may not be the best for the 
organisation.  For example, Joe Bloggs in accounting may want this program 
installed, however the organisation may already have a site licence for another 
program.  The System Administrator, with help from policies, documentation a 
number of other resources,  must attempt to balance these two conflicting aims. 

Why do we need them 

Every year some company, over the last couple of years it is  usually 
Microsoft, announces some new product which is going to make Systems 
Administrators obsolete.  In fact a couple of the network devices mentioned in 
Chapter 0 rarely need any form of Systems Administration activities, you set 
them up and they run. 

The reason for this is that these types of devices are designed to do one job, 
e.g. Mail/file/print servers, and nothing else.  Their purpose is very specific.  
However, most organisations cannot be that specific about what they want 
their computers to do and chances are there won’t be a computing device that 
does exactly what the organisation wants. 

A lot of the need for Systems Administration is to bridge the gap between what 
people/organisations want to do and what the computers the organisation has 
can do. 

What they do 

The real work required to fulfill these aims depends on the characteristics of 
the particular computing system and the company it belongs to.  Factors that 
affect what a Systems Administrator needs to do come from a number of 
categories including: users, hardware ,  support and policy. 

Users 

Users, your colleagues and workmates that use computers and networks to 
perform their tasks contribute directly to the difficulty (or ease) of your task as 
a Systems Administrator.  Some of the characteristics of people that can 
contribute to your job include: 

• How many users are there?   
Two hundred users are more difficult to help than two users and also 
require completely different practices.  With two, or even ten/twenty, users 
it is possible to become well known to them and really get to know their 
requirements.  With two hundred, or in some cases two thousand users, this 
is simply not possible. 

• The level of the user’s expertise. 
This is a combination of the user’s actual expertise and their perceived 
expertise.  A user who thinks they know a lot (but doesn’t really) can often 
be more trouble than a user who knows nothing and admits it. 



85321, Systems Administration Chapter 1: The What, Why and How of Sys Admin 

David Jones (20.01.00) Page 34 

 

Users who know what they know. 

Picture it.  You are a Systems Administrator at a United States 
Air Force base.  The people using your machines include 
people who fly million dollar weapons of destruction that have 
the ability to reduce buildings if not towns to dust.  Your users 
are supremely confident in their ability. 

What do you do when an arrogant, abusive Colonel contacts 
you saying he cannot use his computer?  What do you say when 
you solve the problem by telling him he did not have it plugged 
in?  What do you do when you have to do this more than once? 

It has happened. 

• What are the users trying to do? 
If the users are scientists doing research on ground breaking network 
technology you will be performing completely different tasks than if your 
users are all doing word processing and spreadsheets. 

• Are they responsible or irresponsible? 
Do the users follow the rules or do they make their own?  Do the users like 
to play with the machines?  Being the Systems Administrator in a 
computing department at a University, where the users are computing 
students who want to play and see how far they can go is completely 
different from working in a government department, where the users hate 
computing and only use them when necessary. 

• Who do the users know? 
A user, who has a 15-year-old, computer nerd son can often be the cause of 
problems since the son will tell the parent all sorts of things about 
computers and what can be done.  Very few people have an appreciation of 
the constraints placed on a Systems Administrator and the computers under 
their control.  Looking after a home PC is completely different to managing 
a collection of computers at a place of work. 

Hardware/Software 

The computers, software, networks, printers and other peripherals that are at a 
site also contribute to the type and amount of work a Systems Administrator 
must perform.  Some considerations include: 

• How many, how big and how complex? 
Once again greater numbers imply more work.  Also it may be more work 
looking after a network of Windows NT machines than a collection of 
Windows 3.1 computers.  Some sites will have supercomputers, which 
require specialised knowledge. 

• Is there a network? 
The existence of a network connecting the machines together raises 
additional problems and further increases the workload of the Systems 
Administrator. 



85321, Systems Administration Chapter 1: The What, Why and How of Sys Admin 

David Jones (20.01.00) Page 35 

• Are the computers heterogeneous or homogenous? 
Is the hardware and software on every machine the same, or is it different.  
A great variety in hardware and software will make it much more difficult 
to manage, especially when there are large numbers.  The ability to specify 
a standard for all computers, in both hardware and software, makes the 
support job orders of magnitude easier. 

Support 

One other area, which makes a difference to the difficulty of a job as a Systems 
Administrator, is the level of support in the form of other people, time and 
resources.  The support you do (or don’t) receive can take many forms 
including: 

• Are you alone? 
At some sites there is one administrator who does everything from 
installing peripherals, fixing computers, doing backups, helping users find 
the enter key and a range of other tasks.  At other sites these tasks are split 
amongst a range of administrators, operators and technicians. 

• Are you a full time administrator? 
In some cases the administrator looks after the machines in addition to 
performing their "real job". 

What are the feelings of staff and management towards the Systems 
Administrators? 
In many companies the management and staff see Systems Administrators or 
other computer support people as overhead.  This impression of Systems 
Administrators as an unnecessary expense influences how the users will act. 
Similar feelings can occur if previous Systems Administrators have been 
unprofessional or unable to perform their jobs. 

Policy (Management) 

As you read through this text you will be introduced to various forms of policy 
about the use of computers and networks which are needed.  These policies 
define the what, why and how things are done within an organisation.  These 
can be as petty as always using a specific template for letters, memos and faxes 
through to something as important as whether or not management can order the 
Systems Administrator to read another employee’s email.. 

Official policies are usually the responsibility of management.  It is they who 
should define the rules and the Systems Administrator who puts them into 
action.  Obviously policy shouldn’t be made in a complete vacuum without any 
knowledge of what is possible (but it often is).  Additionally these policies 
should exist and the people using the systems should be aware of them.  If this 
isn’t the case you, or the organisation, can be in trouble legally if you wish to 
enforce a rule (e.g. You can’t send pornographic material to the staff mailing 
list). 



85321, Systems Administration Chapter 1: The What, Why and How of Sys Admin 

David Jones (20.01.00) Page 36 

Home and the Real Wor ld 
Chances are that your only experience with computing is what you have gained 
maintaining your computer at home or perhaps helping out a few friends.  
While useful this experience does not prepare you for what computing is like 
in the real world, especially in a largish organisation.  This small section, along 
with repreated attempts throughout the remaining chapters of this book (see the 
Computers and the Real World section in Chapter 0), attempts to provide you 
with some idea of what is involved with computing in the "real world". 

Some of the differences you will face in the real world include 

• numbers of users 
Most Systems Administrators will be responsible for looking after 
organisations with somewhere between 10 up to 1000s of users.  Looking 
after a small number of users who you know is simple.  You can let each 
person do their own thing and the workload won’t be too great.  However, 
with 100s of users you have to standards and policies which are kept.  
Otherwise you will spend all your time trying to remember the differences 
and be unable to do some real work. 

• 24x7 operation 
Increasingly organisations are finding that they must have computer 
systems available 24 hours a day, 7 days a week.  Maintaining this sort of 
availability requires a number of special steps and rules out a lot of 
practices which are okay when 24x7 operation isn’t an issue.  As you 
progress through the text think about what is written.  What implications 
would 24x7 operation have on the concepts you are reading about. 

What Sys Admins need to know 
The short and sweet answer is that to be a really good Systems Administrator 
you need to know everything about the entire computer system including the 
operating system, hardware, software, users, management, network and 
anything else you can think of that might affect the system in any way. 

Failing that lofty aim the System Administrator must have the ability to gain 
this all-encompassing knowledge.  The discovery process may include 
research, trial and error, or begging.  The abilities to learn and problem solve 
may well be the two most important for a Systems Administrator. 

At some time during their career a Systems Administrator will make use of 
knowledge from the following (far from exhaustive) list of fields, both 
computing and non-computing: 

• programming, 
Systems Administrators have to be able to program.  They might have to 
write scripts that automate regular tasks or a Visual Basic program to help 
users perform certain tasks.  



85321, Systems Administration Chapter 1: The What, Why and How of Sys Admin 

David Jones (20.01.00) Page 37 

• hardware maintenance and installation, 
This may installing new hardware , cleaning old hardware so that it 
continues to work or diagnosing problems with hardware. 

• documentation, 
An essential part of Systems Administrations.  Not only must you write 
documentation for the users of your systems so that they know how to do 
things.  You must also write documentation about what it is you are doing 
and how you are doing it.  This documentation will be used by you and 
your fellow Systems Administrators. 

• testing, 
Testing is not an ad hoc process where you try a few things.  It is an 
indepth field on its own.  Systems Administrators have to have some idea 
about testing.  You can’t put together a system for 1000 users without 
performing some sort of testing. 

• Human Computer Interface, 
Writing GUI or Web-based applications are a common task for Sys 
Admins.  Both require some sort of idea about HCI issues. 

• networks and computer communication, 
Networks are an essential part of any computer system these days.  You 
must be aware of the network and data communications. 

• user education, 
When Office 2000 comes out do you think all the workers in an 
organisation teach themselves how to use it?  Chances are the Systems 
Administrator will have to perform some form of training.  If you are lucky 
your organisation might have professionals who look after this form of 
training.  If you are really lucky your organisation might recognise the 
importance of paying for this training.  I wouldn’t hold my breath. 

• diplomacy, 
What happens when the second in charge of an organisation tells you that 
you’re an &%^#$# idiot and shouldn’t be working here?  Scream back, 
resort to violence, or run away?  A Systems Administrator must be a good 
talker and able to deal with stressful situations. 

• legal issues and contracts, 
Unlike many University students most organisations pay for their software 
(and hardware).  This usually involves dealing with some form of licence 
and legal contracts.  Familiarity with these can be very helpful. 

• detective work and problem solving, 
Following the virtual crumbs to find the cause of a problem can be a lot 
like detective work. 

• management and policy setting, and 

• public relations. 



85321, Systems Administration Chapter 1: The What, Why and How of Sys Admin 

David Jones (20.01.00) Page 38 

 

Reading 

 

The Systems Administrators Guild (SAGE, http://www.usenix.org/sage/) is 
a professional association for Systems Administrators.  SAGE has 
developed a job description booklet that helps describe what Systems 
Administrators do and what they need to know.   

 

A summary of this book is available from the 85321 Web site/CD-ROM 
under the Resource Materials section for week 1. 

 

This text and the unit 85321 aim to develop Junior Systems Administrators as 
specified in the SAGE job descriptions booklet, without the 1 to 3 years 
experience. 

Why UNIX? 
Some parts of Systems Administration are independent of the type of computer 
being used, for example handling user complaints and getting on with 
management.  However by necessity there is a great deal of complex platform 
dependent knowledge that a Systems Administrator must have in order to carry 
out their job.  One train of thought is that it is impossible to gain a full 
understanding of Systems Administration without having to grapple with the 
intricacies of a complex computer system.  This is something I believe. 

This text has been written with the Linux operating system (RedHat version 
6.1), a version of UNIX that runs on IBM PC clones, in mind.  To get the most 
out of this book you will need access to the root password of a computer 
running RedHat version 6.1.   

The reasons for choosing UNIX, and especially Linux, over any of the other 
available operating systems include  

• UNIX has a long history both in industry and academia. 

• Knowing UNIX is more likely to help your job prospects than hinder them. 

• UNIX/Linux is one of the current industry buzzwords. 

• It is hardware independent. 

• Linux is free  
A CD with RedHat Linux can be purchased from the CQU bookshop for 
less than $(AUD)10. 

• Linux runs on a cheap, popular type of computer. 
A 386 with 16Mb of RAM can provide mail, web, print and file services 
for up to 25 users.  486 with 32Mb for up to 100 users. 

• Linux provides the operating system and almost all the other software you 
require to set up a computer system for a small organisation.  



85321, Systems Administration Chapter 1: The What, Why and How of Sys Admin 

David Jones (20.01.00) Page 39 

With Windows NT you will have spend a few thousand dollars, on top of 
what you spend for the operating system, for a database, web server and 
other necessary software. 

• If you can learn Linux then learning Windows NT is a piece of cake (and 
uses many of the same ideas). 

Just as there are advantages in using UNIX there are also disadvantages.  "My 
Operating System is better than yours" is a religious war that I don’t want to 
discuss here.   

UNIX past, present and future 
The history of UNIX is an oft-told tale and it is sometimes hard to pick the 
right version.  The story has been told many ways and the following is one 
version.  Being aware of the history can provide you with some insight into 
why certain things have been done the way they have 

Unix History 

 

These readings are on the 85321 Web site (or CD-ROM) under the 
Resource Materials section for week 1. 

At the current point in time it appears that UNIX has ensconced itself into the 
following market niches  

• server operating system, and 
Machines running UNIX are acting as file servers and network servers for 
local area networks (LANs) of smaller client machines (running MS-DOS, 
Windows, or Macs). 

• workstation operating system. 
Workstations are nominally powerful computers usually used by a single 
user.  Engineers, scientists and other people who require a lot of computing 
power generally use them.  

Both these roles are being challenged by the arrival of new operating systems 
like Windows NT. 

Linux is slowly making inroads into the personal computing environment.  I 
know of a few companies who now use PCs running Linux, X-Windows and 
Gnome/KDE as the standard desktop. 

Linux 
This book has been specifically written to centre on the Linux operating 
system.  Linux was chosen because it is a free, complete version of the UNIX 
operating system that will run on cheap, entry level machines.  The following 
reading provides you with some background into the development of Linux. 



85321, Systems Administration Chapter 1: The What, Why and How of Sys Admin 

David Jones (20.01.00) Page 40 

 

Linux: What is it and a history 

 

These readings are available on the 85321 Web site (or CD-ROM) under 
the Resource Materials section for week 1. 

The relationship between L inux and UNIX 
Linux is by no means the only version of UNIX currently available.  For 
example you will find at least three other versions of UNIX being used at CQU 

• Solaris 
The product of Sun (http://www.sun.com/).  These are the guys also 
responsible for Java.  Sun are probably the major commercial UNIX 
vendor today. 

• Tru64 UNIX 
The product of Compaq Computer who bought out the original 
manufacturers Digital. 

• HP/UX 
Produced by Hewlett Packard 

While almost all of the specifics covered in this text and the course 85321 are 
Linux specific the general concepts are applicable to most versions of UNIX.  
For example the magic file for Linux may be located in /usr/share/magic but 
on Solaris it may well be in a different location.  However, the concept of a 
magic file still exists on Solaris. 

The trick is to remember you will become experienced with Linux specific 
information.  While another version of UNIX will be different you should be 
able to pick it up quite fast. 

Some more Sys Admin theory 
Systems Administration is not a responsibility specific to the UNIX operating 
system. Any company that relies on computers must have Systems 
Administrators. They may not call them Systems Administrators but studies 
have shown that it is cheaper to have a full time professional maintaining a 
company’s computers than it is to expect the computer users perform the same 
tasks.  

Many of the tasks of Systems Administration are not platform specific. For 
example a recent survey of Systems Administrators found that 37% of an 
administrator’s time is spent helping users. This chapter examines some of the 
important platform independent tasks that a Systems Administrator must 
perform. Any Sys Admin that ignores these tasks is going to be in trouble very 
quickly.  

For the purposes of this chapter these tasks have been divided up into four 
categories  



85321, Systems Administration Chapter 1: The What, Why and How of Sys Admin 

David Jones (20.01.00) Page 41 

• daily operations, 

• hardware and software,  

• interacting with people, and  

• administration and planning.  

Daily operations  
There are a number of tasks that must be done each day. Some of these tasks 
are in response to unexpected events, a new user or a system crash, while 
others are just standard tasks that must be performed regularly.  

Automate, automate and automate  

A priority for a Systems Administrator must be to automate any task that will 
be performed regularly. Initially automation may take some additional time, 
effort and resources but in the long run it will pay off. The benefits of 
automation include  

• no need to reinvent the wheel, 
Everytime you need to perform the task you don’t have to remember how 
to do it.  

• it is much simpler,  

• it can be delegated, 
If the task is simple it can be delegated to someone with less responsibility 
or it can be completely automated by using the scheduling capabilities of 
cron  (introduced in a later chapter). 

For example  

Obvious examples for automation include  

• adding and removing users,  

• performing backups, and  

• checking disk usage.  

System monitoring  

This responsibility entails keeping an eye on the state of the computers, 
software and network to ensure everything is working efficiently. 
Characteristics of the computer and the operating system that you might keep 
an eye include  

• resource usage,  

• what people are doing,  

• whether or not the machines normal operations are working.  



85321, Systems Administration Chapter 1: The What, Why and How of Sys Admin 

David Jones (20.01.00) Page 42 

Resource usage  

The operating system and the computer have a number of different resources 
including disk space, the CPU, RAM, printers and a network. One indication 
of problems is if anyone person or process is hogging one of these resources. 
Resource hogging might be an indication of an attack.  

Steps that might be taken include  

• killing the process that is hogging the resource,  

• changing the process’ priorities,  

• getting more of the required resource.  

What are people doing? 

As the Systems Administrator you should be aware of what is normal for your 
site. If the managing director only ever connects between 9 to 5 and his 
account is currently logged in at 1 in the morning then chances are there is 
something wrong.  

Its important not only to observe when but what the users are doing. If the 
secretary is all of a sudden using the C compiler then there’s a good chance that 
it might not be the secretary.  

Normal operations  

Inevitably there will be problems with your system. A disk controller might 
die, a user might start a run away process that uses all the CPU time, and a 
mail bounce might result in the hard-drive filling up or any one of millions of 
other problems.  

Some of these problems will adversely effect your users. Users will respect 
you more if they don’t have to tell you about problems. Therefore it is 
important that you maintain a watch on the more important services offered by 
your computers.  

You should be watching the services that the users use. Statistics about 
network, CPU and disk usage are no good when the problem is that the users 
can’t send email because of a problem in the mail configuration. You need to 
make sure that the users can do what they normally do.  

Hardware and software  
Major tasks that must be performed with both hardware and software include  

• evaluation, 
Examining different packages and deciding which is the best for your 
company’s purpose.  

• purchase, 
Actually obtaining the software, spending the money and signing the 
contracts.  



85321, Systems Administration Chapter 1: The What, Why and How of Sys Admin 

David Jones (20.01.00) Page 43 

• installation, 
Placing the hardware or software onto your system and making it available 
to the appropriate users.  

• testing and maintenance, 
Making sure the equipment works and keeping it working.  

• upgrading, 
Modifying the product to a later version.  

• phasing out. 
Removing the product from use at your company.  

At many companies the Systems Administrator may not have significant say in 
the evaluation and purchase of a piece of hardware or software. This causes 
problems because hardware or software is purchased without any consideration 
of how it will work with existing hardware and software.  

Evaluation  

It’s very hard to convince a software vendor to allow you to return a software 
package that you’ve opened, used but found to be unsuitable. The prospect of 
you making a copy means that most software includes a clause that once you 
open a packet you own the software and your money won’t be refunded.  

However most vendors recognise the need to evaluate software and supply 
evaluation versions. These evaluation versions either are a stripped down 
version with some features turned off, or contain time bomb that makes the 
package useless after a set date.  

Purchase  

Under UNIX there are basically two types of software  

• commercial software, or  

• shareware, public domain or free software.  

Commercial UNIX software will come with the standard agreements and may 
also include a user limit. The software might be able to be used by 4 or 5 users 
simultaneously. Most commercial software is managed by licensing software 
that controls how many copies are being used. As part of the purchase you will 
receive license numbers that govern how the software may be used.  

It must be remembered that free software is never free. It still requires time to 
install, maintain and train users. All this can add up. Some free software can be 
incredibly easy to install and maintain.  

Installation  

Most sites will have a policy that covers how and where software must be 
installed. Some platforms also have software that makes the installation 
procedure much simpler. It is a very good idea to keep local software separate 
from the operating system distribution. Mixing them up leads to problems in 
future upgrades.  



85321, Systems Administration Chapter 1: The What, Why and How of Sys Admin 

David Jones (20.01.00) Page 44 

Under Linux and many other modern Unices it is common practice to install 
all software added locally under the directory /usr/local. There will be more 
on software installation in a later chapter.  

Hardware  

At some sites you may have technicians that handle most of the hardware 
problems. At some sites the Systems Administrator may have to everything 
from preparing and laying cable through to fixing the fax machine. Either way 
a Systems Administrator should be capable of performing simple hardware 
related tasks like installing hard drive and various expansion cards. This isn’t 
the subject to examine hardware related tasks in detail. The following however 
does provide some simple advice that you should keep in mind.  

Static electricity  

Whenever you are handling electrical components you must be aware of static 
electricity. Static can damage electrical parts. Whenever handling such parts 
you should be grounded. This is usually achieved by using a static strap. You 
should be grounded not only when you are installing the parts but at anytime 
you are handling them. Some people eagerly open packages containing these 
parts without being grounded.  

Powering down and wiggling  

Many hardware faults can be fixed by turning the system off (powering down) 
and either pushing on the offending card or SIMM (wiggling). Sometimes 
connectors get dirty and problems can be fixed by cleaning the contacts with a 
soft pencil eraser (in good condition).  

Prevention  

Regular maintenance and prevention tasks can significantly reduce the 
workload for a Systems Administrator.  Some of the common prevention tasks 
may include  

• ensuring that equipment has a clean, stable power supply, 
Using power conditioners or uninterruptable power supplies (UPS) to 
prevent power spikes damaging equipment.  

• ensuring equipment is operating at appropriate temperatures, 
Make sure that the power vents are clean and unblocked and that air can 
actually circulate through the equipment.  

• some equipment will need regular lubrication or cleaning, 

• making sure that printers are clean and have sufficient toner, ink etc. 



85321, Systems Administration Chapter 1: The What, Why and How of Sys Admin 

David Jones (20.01.00) Page 45 

Administration and planning  
This is a task that often receives less attention than others. However it is an 
essential task that can critically effect your performance as a Systems 
Administrator. One of the most important aims for a Systems Administrator is 
to be pro-active rather than reactive. It’s very hard for your users to respect you 
if you are forever badly organised and show no planning ability.  

Important components of administration and planning include  

• documentation, 
Both for yourself, the users and management.  

• time management, 
This is an essential ability for a Systems Administrator who must balance a 
small amount of time between a large number of simultaneous tasks.  

• policy, 
There must be policy on just about everything at a site. Having policies that 
have been accepted by management and hopefully the users is essential.  

• self-education, 
Computing is always changing. A Systems Administrator must keep up 
with the pack.  

• planning, 
What are the aims for your site and yourself for the next 12 months? What 
major events will happen for which you must prepare? 

• automation, and 
Anything that can be should be automated. It makes your job easier and 
gives you more time to do other things.  

• financial planning and management.  

Documentation  

Documentation is the task that most computing people hate the most and yet is 
one of the most important tasks for a Systems Administrator. In this context 
documentation is more than just documentation for users showing them how to 
use the system. It includes  

• keeping a log book that records all changes made to the system,  

• keeping records and maps of equipment, their location, purchase details 
etc, 
Where all the cables are in your building. Which cables connect where. 
Where are all the machines physically located.  

• labelling hardware, 
When you are performing maintenance on computers you will need to 
know information like the type of hard drive controller, number and size of 
disks, how they are partitioned, hostnames, IP addresses, names of 
peripherals, any special key strokes or commands for the machine (e.g. 



85321, Systems Administration Chapter 1: The What, Why and How of Sys Admin 

David Jones (20.01.00) Page 46 

how to reset the computer) and a variety of other information. Having this 
information actually on the machine can make maintenance much easier.  

• producing reports, 
Producing reports of what you are doing and the functioning of the 
machines is extremely important and will be discussed in more detail later.  

• taking minutes at meetings, and 
Chances are you will have to attend meetings. Organising, running and 
recording the minutes of a meeting are all essential skills.  

• producing documentation on how to use the systems at your site. 
The standard type of documentation required by both users and other 
Systems Administrators.  

Why keep records?  

It is not unusual for a Systems Administrator to spend two to three days trying 
to fix some problem that requires minor changes to obscure files hidden away 
in the dim, dark recesses of the file hierarchy. It is not unusual for a problem of 
this sort to crop up unexpectedly every six to twelve months.  

What happens if the Systems Administrator didn’t record the solution? Unless 
he or she is blessed with a photographic memory there is liable to be another 
two to three days lost trying to fix the problem.  

Records of everything done to the system must be kept and they must be 
accessible at all times.  

What type of records?  

It is typical for a Systems Administrator and/or a computer site to maintain 
some type of logbook. There is no set format to follow in keeping a logbook.  

There are two basic types of logbooks that are used.  

• electronic, or 
Log information is stored using some type of program or by simply 
creating a file.  

• paper based. 
Some form of book or folder in which entries are written by hand.  

Table 1.1. compares these two forms of logbook.  

Electronic Paper 

For Against For Against 

easy to update and 
search  

if the machine is 
down there is no 
access to the log 

less prone to machine 
down time  

harder to update and 
search  

easy to include 
command output  

can be hard to 
include diagrams  

can be carried around can become messy 
and hard to read  

T a b l e  1 . 1 .  
E l e c t r o n i c  v e r s u s  p a p e r  l o g  b o o k s   



85321, Systems Administration Chapter 1: The What, Why and How of Sys Admin 

David Jones (20.01.00) Page 47 

What to record?  

Anything that might be necessary to reconstruct the current state of the 
computing system should be stored. Examples of necessary information might 
include  

• copies of policy regarding usernames, directory structure etc, 
Your site might have a set way of assigning usernames or particular 
locations in which certain types of files need to be placed.  

• diagrams of the physical connections and layout of the machines and 
network, 
Any information required to reconstruct your system, for example CMOS 
settings on an IBM PC.  

• a copy of a full listing of the device directory, 
The /dev  directory is likely to contain information specific to your 
machine. If this directory is trashed having a copy in your logbook will 
enable you to reconstruct it.  

• copies of major configuration files, 

• daily modifications to configuration or other files,  

• lists of useful commands, and  

• solutions to common problems.  

Example Log Book Layout  

The type of information recorded will depend on your responsibilities and the 
capabilities of your site. There might be someone else who looks after the 
physical layout of the network leaving you to worry about your machine.  

It is possible that a logbook might be divided into separate sections. The 
sections might include  

• configuration information, 
Listings of the device directory, maps of network and cabling information, 
and any other static information about the system  

• policy and procedure, 
A section describing the policy and procedures of the particular machine 
(usernames, directory locations etc).  

• useful commands, and 
A list of commands or hints that you’ve come across that are useful and you 
would like to remember.  

• daily modifications. 
The daily modifications made to the system in the normal course of events. 
The main reason to store this information is so that you have a record of 
what is being done to your system.  

Each entry in a logbook should contain information about time, date, reason 
for the change, and who made the change.  



85321, Systems Administration Chapter 1: The What, Why and How of Sys Admin 

David Jones (20.01.00) Page 48 

If you intend using a paper based logbook then one suggestion is to use a ring 
binder. Using a ring binder you can add pages to various sections if they start 
to fill up.  

Policy  
Think of the computer systems you manage as an environment in which 
humans live and work. Like any environment, if anarchy is not to reign 
supreme then there must exist some type of behavioural code that everyone 
lives by. In a computer system this code is liable to include such things as  

• a single person shall not hog all the resources (disk, cpu etc),  

• users who work for accounting have xyz access, those who work for 
research have zyx access, and  

• no-one should endeavour to access areas in which they are not allowed.  

Penalties  

A set of rules by themselves is not enough. There must also exist  

• a set of penalties to be applied if one of the policies is broken,  

• a person(s) charged with detecting the breaking of policy,  

• a person(s) charged with deciding the appropriate policy,  

• a mechanism for the change of policy and penalties, and  

• a mechanism for informing users of the policy and the penalties.  

If any one of these necessary components is missing the system may not work 
to the best of its ability.  

It is essential that every computer site have widely recognised and accepted 
policies. The existence of policies ensure consistent treatment of all cases. 
Policies provide guidelines of what to do in particular cases and what to do if 
the policies are broken.  

Types of Policy  

The types of policies you might want to have include  

• the level of service you provide, 
What operating systems, software etc that you can and will support. What 
services you provide your users. When will the Systems Administrators or 
help desk available.  

• the rights and responsibilities of the users, and 
What they can and can’t do. What happens if they break those rules.  

• the rights and responsibilities of the administrators. 
An often over looked policy. Should Systems Administrators look at other 
people’s mail?  



85321, Systems Administration Chapter 1: The What, Why and How of Sys Admin 

David Jones (20.01.00) Page 49 

Creating policy  

Creating policy should include many of the following steps  

• examination of what other similar sites have in the way of policy,  

• widespread involvement of users, management and Systems 
Administrators in the development of policy,  

• acceptance of policy by management, and  

• checking of the policy by lawyers.  

Code of ethics  
As the Systems Administrator on a UNIX system you have total control and 
freedom. All Systems Administrators should follow some form of ethical 
conduct. The following is a copy of the SAGE-AU Code of Ethical Conduct. 
The original version is available on the Web at http://www.sage-
au.org.au/ethics.html.  

SAGE-AU code of ethics  

In a very short period of time computers have become fundamental to the 
organisation of societies world-wide; they are now entrenched at every level of 
human communication from government to the most personal. Computer 
systems today are not simply constructions of hardware -- rather, they are 
generated out of an intricate interrelationship between administrators, users, 
employers, other network sites, and the providers of software, hardware, and 
national and international communication networks.  

The demands upon the people who administer these complex systems are 
wide-ranging. As members of that community of computer managers, and of 
the System Administrators’ Guild of Australia (SAGE-AU), we have compiled 
a set of principles to clarify some of the ethical obligations and responsibilities 
undertaken by practitioners of this newly emergent profession. 

We intend that this code will emphasise, both to others and to ourselves, that 
we are professionals who are resolved to uphold our ethical ideals and 
obligations. We are committed to maintaining the confidentiality and integrity 
of the computer systems we manage, for the benefit of all of those involved 
with them. 

No single set of rules could apply to the enormous variety of situations and 
responsibilities that exist: while system administrators must always be guided 
by their own professional judgment, we hope that consideration of this code 
will help when difficulties arise. 

(In this document, the term "users" refers to all people with authorised access 
to a computer system, including those such as employers, clients, and system 
staff.) 



85321, Systems Administration Chapter 1: The What, Why and How of Sys Admin 

David Jones (20.01.00) Page 50 

SAGE-AU code of ethics  

As a member of SAGE-AU I will be guided by the following principles:  
Fair Treatment  

I will treat everyone fairly. I will not discriminate against anyone on grounds such as age, 
disability, gender, sexual orientation, religion, race, or national origin. 
 

Privacy 
I will access private information on computer systems only when it is necessary in the course 
of my duties. I will maintain the confidentiality of any information to which I may have 
access. I acknowledge statutory laws governing data privacy such as the Commonwealth 
Information Privacy Principles. 
 

Communication 
I will keep users informed about computing matters that may affect them -- such as conditions 
of acceptable use, sharing of common resources, maintenance of security, occurrence of 
system monitoring, and any relevant legal obligations. 
 

System Integrity 
I will strive to ensure the integrity of the systems for which I have responsibility, using all 
appropriate means -- such as regularly maintaining software and hardware; analysing levels of 
system performance and activity; and, as far as possible, preventing unauthorised use or 
access. 
 

Cooperation 
I will cooperate with and support my fellow computing professionals. I acknowledge the 
community responsibility that is fundamental to the integrity of local, national, and 
international network resources. 
 

Honesty 
I will be honest about my competence and will seek help when necessary. When my 
professional advice is sought, I will be impartial. I will avoid conflicts of interest; if they do 
arise I will declare them. 
 

Education 
I will continue to update and enhance my technical knowledge and management skills by 
training, study, and the sharing of information and experiences with my fellow professionals. 
 

Social Responsibility 
I will continue to enlarge my understanding of the social and legal issues that arise in 
computing environments, and I will communicate that understanding to others when 
appropriate. I will strive to ensure that policies and laws about computer systems are 
consistent with my ethical principles. 
 

Workplace Quality  
I will strive to achieve and maintain a safe, healthy, productive workplace for all users. 

People skills  
The ability to interact with people is an essential skill for Systems 
Administrators. The type of people the Systems Administrator must deal with 
includes users, management, other Systems Administrators and a variety of 
other people.  



85321, Systems Administration Chapter 1: The What, Why and How of Sys Admin 

David Jones (20.01.00) Page 51 

The following reading was first published in "The Australian Systems 
Administrator" (Vol 1, Issue 2, June/July 1994) the bimonthly newsletter of the 
Systems Administrators Guild of Australia (SAGE-AU). It provides an 
example of how a real-life System Administrator handles user liaison. 

Communicating with Users  

Copyright Janet Jackson  

Next to balancing conflicting demands, communicating with users is the 
hardest part of my job. I tend to make a great effort for little gain, whereas in 
technical endeavours a little effort can produce a major, long-lasting 
improvement (for example, taking ten minutes to set up regular, automated 
scratch area cleanups has saved me hours of tedious work and the users a lot of 
frustration). 

Also, with users there are emotions to take into account. It doesn’t matter 
whether the computer respects you, but if the users respect you life is a lot 
easier. 

My aim in communicating with users is to make life (my job and those of the 
users) easier by:  

getting them to respect me (my judgment; my abilities; my integrity and 
professionalism). 

teaching them all sorts of things, such as how to remove jobs from the printer 
queue; what they have to do to keep the systems secure; and when not to 
interrupt me with questions. 

In this column I’m going to describe some of the communication vehicles I’ve 
tried, and how effective they’ve been for me. I’ll start with those I’ve found 
least effective overall, and work my way up. 

Probably the method most useless with the general user community is the 
policy statement. The typical user just isn’t going to read it. However, it can 
be a good way of communicating with management. Drafting a good policy 
statement (based on discussions with everyone, but especially with them) 
shows you mean business and understand how your work fits into the 
organisation. It should cover the responsibilities of the systems administrator 
as well as those of the users. 

Group meetings, whether of the users in general or of a committee of 
representatives, can help people -- again, especially senior people -- feel more 
confident that things are going OK, but aren’t much use for disseminating 
information. If a meeting is run well you can have a productive discussion of 
major issues, but if run badly it is likely to turn into a gripe session. 

Paper memos are to be avoided, because they encourage stiffness and 
formality. I use them only to answer other people’s paper memos (which are 
usually complaints) and then only when I don’t think the person will read it if I 
do it by email. Replying by email to a memo has the effect of saying "There’s 
no need to be so formal". 

There are a number of leading-the-horse-to-water methods, which only work if 
the user makes an effort. You can use electronic information services, such 
as bulletin boards, newsgroups, Gopher, or online manuals; and you can get 
together a library of printed manuals and books. If you provide easy access to 



85321, Systems Administration Chapter 1: The What, Why and How of Sys Admin 

David Jones (20.01.00) Page 52 

high-quality information, the interested user can learn a lot. Unfortunately it’s 
often the disinterested user that you really want to reach. 

People often come to my office to ask me things. You’d think that face-to-face 
communication would work the best, but in this particular setting it doesn’t 
because I am not comfortable. It’s not so much that I resent interruptions -- it’s 
that I don’t have an office, only a desk. There’s no room for a visitor’s chair; to 
talk to anyone I have to swivel round and face backwards; and people make a 
habit of sneaking up on me. Hopefully, one day my campaign for proper 
accommodation will be successful, and it will be interesting to see how much 
difference it makes. 

Talking on the phone is only good for emergencies. Someone is always 
interrupted; there’s no body language; and you tend to forget half of what you 
wanted to say. 

I write a column, "Computer Corner", in our staff newsletter. I sometimes 
write about issues (such as what I’m trying to achieve) and sometimes about 
technical tips. This column isn’t as useful as I’d hoped. The first problem is that 
there isn’t room to say much, because the newsletter is short and a bit, shall we 
say, irregular. The second problem is that the rest of the newsletter tends to be 
kind of dull (lists of visitors; dry field-trip reports; the occasional births and 
deaths) so people aren’t so eager to read it. When I pointed this out I was told 
that it is deliberately impersonal and non-funloving because some of the more 
senior readers are rather easily offended. Sigh. 

Next on the scale are signs (on doors, noticeboards, etc) and electronic 
messages-of-the-day. People have a strong tendency to miss the former and 
ignore the latter. It may help to make them more interesting with graphics, 
pictures and human-interest items. 

Seminars and workshops are worthwhile if you can get people to attend, but 
they’re a lot of work. If not many turn up, you don’t get much return on your 
investment. Students can sometimes be induced to attend by making it count 
towards their marks. In other situations, offering food, door prizes, alcohol, 
sex, drugs or rock-n-roll may help. 

For explaining specific information (how to pick a good password; how UNIX 
file permissions work) I’ve found paper handouts reasonably effective. Some 
users take them quite seriously, even filing them for later reference. 
Unfortunately, others toss them straight in the bin. 

After about 3 months in my current job I emailed everyone a questionnaire, 
asking such things as what they used the systems for, what new services they 
would like to see, and how often they did backups. I offered a chocolate frog to 
each person who replied. The subject line "Apply here for your FREE 
chocolate frog" caused some of the more pokerfaced members of staff to delete 
the mail without reading it, but otherwise the response was surprisingly good. 
In hindsight, I guess the questionnaire generated more PR than information, 
although it did confirm my suspicion that most people did not back up their 
data even though they were supposed to. 

For me, the second most effective communication vehicle is email. Email is as 
informal as a personal visit or phone call, but you can get in a lot more 
information. It is also asynchronous: no-one has to be interrupted, and you 
don’t have to wait for people to be available. 



85321, Systems Administration Chapter 1: The What, Why and How of Sys Admin 

David Jones (20.01.00) Page 53 

I often use email broadcasts for notification -- to tell people about impending 
downtime, for example. Email is quick, convenient, and reaches people who 
are working offsite. It is also informal and I think people feel more at ease with 
it than they do with paper memos and printed signs. 

1-to-1 email gives people a sense of personal service without much of the 
hassle that normally entails. At my site people can email problem reports and 
questions to a special address, "computerhelp". Our stated aim is to respond 
within 2 working days. We don’t always make it. But it does give people a 
point of contact at all times, even after hours, and it means we get a few less 
interruptions. 

You’d think all of that might be enough, but no. My boss said, "You need to 
communicate more with the users, to tell them about what you’re doing". I 
agreed with him. So I now produce a fortnightly emailed bulletin. It is longer 
and more formal than a typical email message, with headings and a table of 
contents. Most of the information in it is positive -- new software that we’ve 
installed, and updates on our program of systems improvements. I also include 
a brief greeting and a couple of witty quotations. Judging by the feedback I’ve 
received, this seems to be working remarkably well -- much better than the 
staff newsletter column. 

The only thing that works better than email is personal visits where I am in 
their office, usually leaning over their screen showing them how to do 
something. Taking an interest in their work helps a lot. I find this easy where 
they are graphing the temperature of a lake in glorious colour, but more 
difficult where they are typing up letters. I don’t do enough personal visiting, 
partly because I’m so busy and partly because I’m not keen on interrupting 
people. It usually happens only when they’ve asked a question that requires a 
"show me" approach. 

A disadvantage of personal visits is that they help only one person at once, 
whereas with email you can reach all your users. 

To sum up: in communicating with users, I aim to teach them things and get 
them to respect me. By sending email I can help the most people for the least 
effort, although personal visits have much more impact. There are other useful 
methods, such as policy statements, newsletters, handouts and seminars, but 
they may not reach the ones who need it most. 

It’s hard. Very hard. If you have any insights or ideas in this area, I’d love to 
hear them, and I’m sure the rest of the readers would too. 

Communicating with management  

Relationships between Systems Administrators and management can be tense 
generally because both sides don’t understand the importance and problems of 
the other. Having good Systems Administrators is essential. As is having good 
management. Management is a difficult task which you won’t understand or 
agree with until you have to perform it.  

As a Systems Administrator you should keep in mind that the aims of 
management will not be the same as yours. Management is about profit. When 
you deal with management keep this in mind.  

If you need an upgrade of a machine don’t argue it on the basis that the load 
average is running at 5 and the disks are full. Argue it on the basis that due to 



85321, Systems Administration Chapter 1: The What, Why and How of Sys Admin 

David Jones (20.01.00) Page 54 

the lack of resources the sales force can’t take orders and the secretaries are 
loosing documents which is leading to loss of customers.  

Generally Systems Administrators tend to focus on achieving a good technical 
solution. This must be balanced with helping the company you are working for 
make money.  

How not to communicate with users 

The Bastard Operator from Hell is a classic (amongst Systems Administrators) 
collection of stories about a mythically terrible operator.  It provides an 
extreme view of a bad system support person and is also quite funny 
(depending on your sense of humour).  Some of the language may offend some 
people. 

Bastard Operator from Hell 

 

Available on the 85321 Web site under the Resource Materials section for 
week 1. 

Conclusions 
Systems Administration is a complex and interesting field requiring knowledge 
from most of the fields in computing.  It provides a challenging and interesting 
career.  The Linux operating system is an important and available alternative in 
the current operating systems marked and forms the practical component for 
this course. 



85321, Systems Administration   Chapter 2:  Information Sources for Sys Admin 

David Jones (20.01.00)                                                                                                         Page 55 

Chapter   
Information Sources and Problem Solving  

Introduction  
As a Systems Administrator you will be expected to fix any and all problems 
that occur with the computer systems under your control.  There is no why that 
this book or 85321 can prepare you for every situation and problem you will 
come across.  Additionally, for most of us mere mortals it is simply not 
possible for us to know everything that is required.  Instead as a Systems 
Administrator must you know the important facts and be able to quickly 
discover any new information that you don’t yet know.  You must be able to 
diagnose and solve the problem even though you have never seen it before. 

This chapter examines the sources of information that a Systems Administrator 
might find useful including professional associations,books, magazines, and 
the Internet.  It also provides some guidelines about how you might go about 
solving problems you have never seen before.  While some of this information 
is Linux specific most of it is applicable to any operating system. 

As the semester progresses you should become familiar with and use most the 
information sources and the problem solving process presented here.  

Other  Resources 
This chapter mentions a large number of Internet resources and includes the 
URLs.  You can find an up to date listing of these links and other related links 
on the Links database on the 85321 Website 
(http://infocom.cqu.edu.au/85321/). 

Other resources which are related to this chapter include 

• Online lecture 2 on the 85321 website 

• HOW-TOs 
Online Troubleshooting Resources HOW-TO, Reading List HOW-TO and 
the Staying Updated mini-HOW-TO 

Information Sources 
The following sections first examine the range of information sources you 
have available as a Systems Administrator.  Each of the following section 
deals with a different type of resource.  As a trainee Sys Admin you should 
find yourelf starting to use these resources during your study.  Learning how to 
answer your own questions is perhaps the most important thing you can take 
from this text. 

The information sources discussed in the following includes 



85321, Systems Administration   Chapter 2:  Information Sources for Sys Admin 

David Jones (20.01.00)                                                                                                         Page 56 

• Professional associations 
There are quite a diverse list of professional assocations available which 
may be useful to a Systems Administrator. 

• Books and magazines 
There are now a wide range of relevant books and magazines to chose 
from. 

• Internet sources 
The Internet is perhaps the most comprehensive and up to date resources 
for Systems Administrators, if used correctly. 

Professional organisations  
Belonging to a professional organisation can offer a number of benefits 
including recognition of your abilities, opportunities to talk with other people 
in jobs similar to yours and a variety of other benefits.  Most professional 
organisations distribute newsletters, hold conferences and many today have 
mailing lists and Web sites. All of these can help you perform your job. 

Professional organisations a Systems Administrator might find interesting 
include  

• Systems Administrators Guild of Australia (SAGE-AU, http://www.sage-
au.org.au/),  

• Systems Administrators Guild(SAGE) (the American version of SAGE-
AU, http://www.usenix.org/sage/),  

• Australian UNIX Users Group (AUUG, http://www.auug.org.au/),  

• Australian Computer Society (ACS, http://www.acs.org.au/),  

• Usenix (http://www.usenix.org.au/), 

• Internet Society of Australia (http://www.isoc-au.org.au/) 

This list has a distinct Australian, UNIX, Internet flavour with just a touch of 
the USA thrown in. If anyone from overseas or from other factions in the 
computer industry (i.e. Novell, Microsoft) has a professional organisation that 
should be added to this list please let me know (d.jones@cqu.edu.au). 

The UNIX Guru Universe (UGU http://www.ugu.com/) is a Web site which 
provides a huge range of pointers to UNIX related material.  It will be used 
throughout this chapter and in some of the other chapters in the text. 

Professional Associations 
 

The Resource Materials section on the 85321 Web site for week 1 has a 
page which contains links to professional associations and user 
organisations. 

The SAGE groups  

SAGE stands for Systems Administrators Guild and is the name taken on by a 
number of professional societies for Systems Administrators that developed 



85321, Systems Administration   Chapter 2:  Information Sources for Sys Admin 

David Jones (20.01.00)                                                                                                         Page 57 

during the early 90s. There are national SAGE groups in the United States, 
Australia and the United Kingdom.  

SAGE-AU  

The Australian SAGE group was started in 1993. SAGE-AU holds an annual 
conference and distributes a bi-monthly newsletter. SAGE-AU is not restricted 
to UNIX Systems Administrators.  

Both SAGE and SAGE-AU have a presence on the WWW. The Professional 
Associations page on the 85321 Web site contains pointers to both.  

UNIX User groups  

There are various UNIX user groups spread throughout the world. AUUG is 
the Australian UNIX Users Group and provides information of all types on 
both UNIX and Open Systems. Usenix was one of the first UNIX user groups 
anywhere and is based in the United States. The American SAGE group grew 
out of the Usenix Association.  

Both Usenix (http://www.usenix.org/)and AUUG 
(http://www.auug.org.au/)have WWW sites.  Both sites have copies of material 
from the associations’ newsletters. 

It should be noted that both user groups have gone beyond their original UNIX 
emphasis.  This is especially true for Usenix which runs two important 
symposiums/conferences on Windows NT. 

The ACS, ACM and IEEE 

The ACS is the main professional computing society in Australia servicing 
people from all computing disciplines. The flavour of the ACS is much more 
business oriented than SAGE-AU.  

The ACS is also moving towards some form of certification of computing 
professionals and some jobs may require ACS membership.  

For more information refer to the  WWW page (http://www.acs.org.au/).  

The Association for Computing Machinery (the ACM, http://www.acm.org/) is 
one of the largest American professional computing societies.  Its publications 
are considerably more technical and wide ranging than the ACS. 

The Institute for Electrical and Electronics Engineers (IEEE, 
http://www.ieee.org/) also has a Computing Society 
(http://www.computer.org/). 

Books and magazines  
When a new computing person asks a technical question a common response 
will be RTFM. RTFM stands for Read The Fine (and other words starting with 
f) Manual and implies that the person asking the question should go away and 
look at documentation for the answer.  

Around five years ago RTFM for a Systems Administrator meant reading the 
on-line man pages, some badly written manual from the vendor or maybe, if 



85321, Systems Administration   Chapter 2:  Information Sources for Sys Admin 

David Jones (20.01.00)                                                                                                         Page 58 

lucky, a Usenet newsgroup or two. Trying to find a book that explained how to 
use cron or how to set up NFS was a difficult task.  
Since then there has been an explosion in the number of books and magazines 
that cover Systems Administration and related fields.  This is especially 
noticable over the last couple of years with the huge hype surrounding Linux 
and Open Source software.  The following pages contain pointers to a number 
of different bibliographies that list books that may be useful.  

A Linux specific "magazine" which anyone with access to the 85321 CD-
ROM/Website (or to the Linux Documentation Project) can read is the Linux 
Gazzette. 

Bibliographies  

UNIX, Systems Administration and related books. 

 
The Resource Materials section for week 1, on the 85321 Web site and CD-
ROM, has a collection of pointers to books useful for 85321 and Systems 
Administrators in general. 

O’Reilly books  

Over the last few years there has been an increase in the number of publishers 
producing UNIX, Systems Administration and network related texts. However 
one publisher has been in this game for quite some time and has earned a 
deserved reputation for producing quality books.  

A standard component of the personal library for many Systems 
Administrators is a collection of O’Reilly books. For more information have a 
look at the O’Reilly Web site (http://www.ora.com/). 

Magazines  

There are now a wide range of magazines dealing with all sorts of Systems 
Administration related issues, including many covering Windows NT.  

Magazines 

 
The 85321 Web site contains pointers to related magazines under the 
Resource Materials section for week 1. 

Internet resources  
The Internet is by far the largest repository of information for computing 
people today.  This is especially true when it comes to UNIX and Linux related 
material.  UNIX was an essential part of the development of the Internet, while 
Linux could not have been developed without the ease of communication made 
possible by the Internet.  If you have a question, a problem, need an update for 
some software, want a complete operating system or just want to have a laugh 



85321, Systems Administration   Chapter 2:  Information Sources for Sys Admin 

David Jones (20.01.00)                                                                                                         Page 59 

the Internet should be one of the first places you look as a Systems 
Administrator. 

So what is out there that could be of use to you?  You can find 

• software 

• discussion forums, and 

• information. 

Each of these is introduced in more detail in the following sections. 

The 85321 Website 

The 85321 website (http://infocom.cqu.edu.au/85321/) contains mirrors, 
pointers and other resources related to some of the Internet related material 
discussed below.  These resources will include 

• a link database 
Chances are the links listed here will become out of date.  The 85321 
Website maintains a database of Linux and Systems Administration related 
links which include ratings.  You can add links as to this database. 

• a FAQ database 
The LDP and most newsgroups maintain lists of common questions (with 
answers) this database allows you to quickly search and view these 
questions. 

• a Deja search interface 
The 85321 home page contains a form where you can perform a search of 
DejaNews. 

How to use the Internet  

By this stage it is assumed that you should be a fairly competent user of the 
Internet, the World-Wide Web, email, Usenet news and other net based 
resources.  If you are a little rusty or haven'’t been introduced to many of these 
tools there are a large number of tutorials on the Internet that provide a good 
introduction. A good list of these tutorials is held on the Yahoo site 
(http://www.yahoo.com/).  

Software on the Internet 

There is a large amount of "free" UNIX software available on the Internet. It 
should be remembered that no software is free. You may not pay anything to 
get the software but you still have to take the time to install it, learn how to use 
it and maintain it. Time is money.  

GNU software (GNU is an acronym that stands for GNU's Not UNIX) is 
probably the best known "public-domain" software on the Internet. Much of 
the software, for example ls cd  and the other basic commands, that comes 
with Linux is GNU software.  In fact there is a trend amongst some people to 
call Linux, GNU/Linux, to reflect the amount of GNU software a Linux 
distribution uses. 



85321, Systems Administration   Chapter 2:  Information Sources for Sys Admin 

David Jones (20.01.00)                                                                                                         Page 60 

The Gnu Manifesto  

 

A copy of the GNU manifesto is available on the 85321 Web site and CD-
ROM under the Resource Materials section for this week. 

 

The GNU website (http://www.gnu.org/) contains a lot more information 
about GNU’s projects. 

 

A good place to go to get the latest Open Source software (if you are based in 
Australia) is the AARNet mirror (http://www.mirror.aarnet.edu.au or 
ftp://mirror.aarnet.edu.au).  It contains mirrors of a lot of popular Open Source 
software including GIMP, MySQL, Perl, Linux, Apache, KDE etc. 

Discussion forums 

Probably the biggest advantage the Internet provides is the ability for you to 
communicate with other people who are doing the same task.  Systems 
Administration is often a lonely task where you are one of the few people, or 
the only one, doing the task.  The ability to share the experience and 
knowledge of other people is a big benefit. 

Major discussion forums on the net include 
� Usenet news 
� Mailing lists 
� other discussion tools 

Usenet news 

Once one of the most popular features of the Internet Usenet news has lost 
some of its popularity as the number of people on the Internet increases.  
Usenet news is a collection of discussion forums which are distributed and 
read with specialised software (i.e. You read Usenet news with a news reader).  
There are discussion forums on a wide range of topics from purely social 
through to very technical. 

A Systems Administrators technical interested is usually attracted to the large 
number of Linux/Systems Administration/Network related newsgroups.  
Newsgroups are a good place to ask questions, listen to other people and learn 
about topics.  Some of the more useful newsgroups for this 85321 include  

�

comp.os.linux.*  
There are a large number of newsgroups under this heading discussing 
most Linux related topics, e.g. comp.os.linux.setup is used for 
discussion about installing and setting up a Linux box. 

�

comp.unix.*  
Another large collection of newsgroups talking about UNIX in particular. 



85321, Systems Administration   Chapter 2:  Information Sources for Sys Admin 

David Jones (20.01.00)                                                                                                         Page 61 

Useful groups include comp.unix.questions  for general UNIX questions 
and comp.unix.admin  for Systems Administration type questions.  

�

aus.computer.linux  
An Australian Linux newsgroup.  

http://www.linuxresources.com/online.html maintains a more detailed description and 
list of Linux newsgroups. 

Just the FAQs 

As you might imagine there are some questions which are asked again and 
again and again on newsgroups.  Rather than repeat the answers to these 
questions again and again most newsgroups maintain a list of Frequently 
Asked Questions (FAQs).  It is considered good practice when joining a 
newsgroup for the first time to read the the FAQs.  It is a compulsory task 
before you ask a question on a newsgroup. 

You can access the FAQs for most newsgroups at http://www.faqs.org/.  This 
site contains over 3300 seperate FAQs written by over 1250 authors covering 
1700 newsgroups.  The 85321 website also maintains a collection of many of 
the FAQs relevant to Systems Administration. 

Exercises 

2.1. There is a newsgroup called comp.os.unix. Like many newsgroups this 
group maintains an FAQ. Obtain the comp.unix.questions  FAQ and 
answer the following questions  
- find out what the rc stands for when used in filenames such as .cshrc 
/etc/rc.d/rc.inet1   
- find out about the origins of the GCOS field in the /etc/passwd  file  

Google and Deja News  

Google (http://www.google.com/) and DejaNews (http://www.deja.com/) are 
among the two most useful websites when it comes to finding technical 
information.  Learn to use and enjoy them.  Google is a Web search engine 
which uses technology to provide better ranking of Websites than other search 
engines.   

DejaNews is an archive and search engine of posts to Usenet News.  The 
quickest way to find solutions to a lot of problems you will come across is to 
perform an appropriate search on DejaNews. 

Learn to use these sites. 

Mailing lists  

For many people the quality of Usenet News has been declining as more and 
more people start using it.  One of the common complaints is the high level of 
beginners and the high level of noise.  Many experienced people are moving 
towards mailing lists as their primary source of information since they often 



85321, Systems Administration   Chapter 2:  Information Sources for Sys Admin 

David Jones (20.01.00)                                                                                                         Page 62 

are more focused and have a “better” collection of subscribers and 
contributors.  

Mailing lists are also used by a number of different folk to distribute 
information.  For example, vendors such as Sun and Hewlett Packard maintain 
mailing lists specific to their operating systems (Solaris and HP-UX).  
Professional associations such as SAGE-AU and SAGE also maintain mailing 
lists for specific purposes.  In fact, many people believe the SAGE-AU mailing 
list to be the one of the best reasons for joining SAGE-AU as requests for 
assistance on this list are often answered within a few hours (or less). 

Mailing lists 

 
One good guide to all the mailing lists that are available is Liszt, mailing list 
directory (http://www.liszt.com/). 

The UNIX Guru’s Universe also maintains a directory of mailing lists 
related to Sys Admin. 

Other Discussion Forums 

There are also other forums that may be useful for Systems Administrators and 
make use of technology other than Usenet news or mailing lists.  These forums 
often use IRC or Web-based chat and bulletin board facilities.   

Over the last year or so Web-based bulletin board like systems have come to 
the fore.  Examples include 

• Slashdot, http://www.slashdot.org/  
A bunch of people contribute links and information about what is 
happening in the nerd world.  Includes a lot of interesting Linux related 
material. 

• Linux Today, http://www.linuxtoday.com/  
A slightly more business oriented version of Slashdot.  A bit more serious 
but still a great information source. 

• Freshmeat, http://www.freshmeat.net/  
A place where people announce the latest releases of Open Source software 

Internet based Linux resources  

Linux would not have been possible without the Internet. The net provided the 
communications medium by which programmers from around the world could 
collaborate and work together to produce Linux. Consequently there is a huge 
collection of Internet based resources for Linux.  

The Linux Documentation Project  

The best place to start is the Linux Documentation Project (LDP).  The aim of 
this project is to produce quality documentation to support the Linux 
community.  The original LDP page is located at http://www.linuxdoc.org/  

A mirror of the LDP pages is maintained on the 85321 Web site and a copy of 
these pages can be found on the 85321 CD-ROM. 



85321, Systems Administration   Chapter 2:  Information Sources for Sys Admin 

David Jones (20.01.00)                                                                                                         Page 63 

A major source of information which the LDP provides are the HOW-TOs. 
HOW-TOs are documents which explain how to perform specific tasks as 
diverse as how to install and use StarOffice (a commercial office suite that is 
available free, and may well be on the 85321 CD-ROM) through to detailed 
information about how the Linux boot-prompt works. 

The HOW-TOs should be the first place you look for specific Linux 
information. Copies are available from the LDP Web pages. 

RedHat 

This version of the text is written as a companion for RedHat Linux.  As a 
result it will be a common requirement for you find out information specific to 
RedHat Linux.  The best source on the Internet for this information is the 
RedHat site, http://www.redhat.com/. 

Possibly the most important information source on the RedHat site are the 
updates/errata pages for the distribution of RedHat Linux you have installed.  
There will be errors and new software for RedHat Linux and RedHat are the 
best source.  If you installed RedHat off a CD you may also find some of the 
updates and errata on it. 

Additionally RedHat provide three manuals with RedHat Linux 6.1.  All three 
of the manuals are available as postscript files on the RedHat Linux CD.  The 
three manuals are 

• Red Hat Installation Guide 
A copy of this will be included in the package received by distance 
education students of CQU.  This guide is designed to help you install 
RedHat Linux 6.1 onto your computer. 

• Red Hat Linux Getting Started Guide 
Provides information you will likely need to configure your Linux box 
including an overview of Gnome.  Gnome is the default desktop 
environment with RedHat Linux 6.1. 

• RedHat Linux Reference Guide 
Contains references to a wide range of information you may need while 
using your computer.  

Problem Solving 
I will guarantee that you will have problems with Linux while you are 
attempting the tasks and reading about the concepts introduced in this text.  
Most of the time these problems will be unlike anything you have ever seen 
before.  You probably won’t have any idea what the actually problem is.  You 
may have difficulty even starting to describe it. 

Don’t PANIC!!!! 

Every Systems Administrator, every computer user has faced this same 
problem.  The difference between a bad Systems Administrator and a good one 
is the ability to problem solve.  If you can learn to solve problems you have 
never faced before then you can do anything. 



85321, Systems Administration   Chapter 2:  Information Sources for Sys Admin 

David Jones (20.01.00)                                                                                                         Page 64 

Guidelines for solving problems 

The "Linux Installation and Getting Started Guide" (part of the Linux 
Documentation Project) provides the following guidelines for solving 
problems.  They are a good start. 

Remain calm. 
Never ever attempt to solve anything computer related while you are upset, 
angry, sad, tired or emotional in any way.  Any of these feelings will adversely 
affect your ability to solve the problem.  In other words they are likely to make 
things worse. 

Learn to appreciate self-reliance  
The key to problem solving is that you have to do it.  If you are continually 
relying on other people to solve your problems you will never learn anything.  
Try and solve your problems first.  If you can’t solve your problems talk to 
someone about what you are doing and why you are doing it.  Try and figure 
out why you can’t solve problems.  The idea is that you have to do this before 
you can start problem solving on your own. 

Consult all available sources of information  
Most people, especially in the Linux world, are more than happy to help out 
with a problem.  However, they can get very upset if the question you are 
asking has already been answered in some documentation or on the Web. 

Know the best places to look  
There are a huge number of different places from which you can get 
information about Linux and Systems Administration.  The same applies to 
Windows NT.  If you know which sites are best for which sort of information 
you can significantly cut down your search time. 

Refrain from asking spurious questions  
Linux has the best support mechanism of any operating system and the best 
thing about it is that it is free.  However, there are accepted codes of behaviour 
and one of them is "Don’t ask stupid questions". 

When asking for help be polite, terse and informative  
"I can’t boot my Linux computer" is not informative.  If you don’t provide 
sufficient information no-one will be able to offer help.  At the other extreme, 
if you provide too much information people won’t be bothered to read it.  
Lastly, no-one likes a rude person.  If you are rude people are likely to be rude 
back again and not help. 

Contribute to the community  
The number of people contributing to Linux newsgroups, the LDP and other 
areas is the main reason why Linux support is so good.  If you know the 
answer to a problem share it with other people and help make the support even 
better. 

These guidelines are a good start.  The following are some additional ones I’ve 
developed over the last few years. 

• Understand what the problem is. 
This may seem to be a bit obvious.  However, 5 years of teaching 85321 
has shown that the most common reason students can’t solve their problems 



85321, Systems Administration   Chapter 2:  Information Sources for Sys Admin 

David Jones (20.01.00)                                                                                                         Page 65 

is that they don’t understand what the problem is.  If you don’t know what 
the problem is find out or following the next suggestion. 

• Break the problem down into smaller steps 
If the problem is too complex, too large or you don’t understand it try 
breaking it down into smaller steps so you can solve (or understand) those. 

• Don’t get to close, walk away 
There will be times when the best thing you can do is walk away and do 
something else for a while.  Any person with experience in the computing 
field should be able to tell a story about how a solution to a frustrating 
problem popped into their head while mowing the lawn, watching 
television or having a shower.  Some distance from the problem can 
provide the bit of perspective you needed to figure out the problem. 

• Talk to people. 
A group of people will always be able to solve more problems than a single 
person. More people means more experience and different perspectives.  If 
you don’t know the solution chances are someone else does. 

• Record the solution 
This could be considered as contributing to the community but it also 
serves a much more selfish reason.  If you have faced the problem once 
then chances are it you, or another Systems Administrator, will face it 
again.  If you have documented the solution to the problem then solving it 
the 2nd, 3rd or 4th time will be much quicker. 

Examples of solving problems 

The 2nd 85321 online lecture includes three examples of how to use the 
resources and approaches introduced above to solve problems.   

Conclusions  
A lot of time spent by Systems Administrators is consumed attempting to solve 
new problems.  A Systems Administrator must be able to solve new problems.  
Being aware of the available information sources and their relative merits is an 
important step towards being able to solve these problems.  While the 
information presented in this chapter may be useful it is experience which is 
the most useful tool in solving problems.  Take the time to gain this 
experience. 

Review Questions 
2.1   Use the information sources here to solve some of the problems you are 
currently having.  If you aren’t having problems, tind a question from one of 
the Linux or UNIX newsgroups. 

2.2.  Examine the errata list for your version of RedHat Linux.  Do any of 
these errata appear important to your system? 

 



85321, Systems Administration                                                                               Chapter 3:  Using UNIX 

David Jones (20.01.00)                                                                                                            Page 66 

Chapter 
Using UNIX 

 

Introduction  
A Systems Administrator not only has to look after the computers and the 
operating system, they also have to be the expert user (or at least a very 
knowledgeable user) of their systems. When other users have problems where 
do they go? The documentation? Online help facilities? No, they usually go to 
the Systems Administrator.  Adding to the importance of the material covered 
in the next few chapters is that a number of the topics introduced here are the 
foundations on which some of the more complex Systems Administration 
topics are built.  If you don’t understand these concepts now you will have 
problems later on. 

The following reading aims to start you on the road to becoming an expert 
UNIX user.  Becoming a UNIX guru can only be achieved through a great deal 
of experience so it is important that you spend time using the commands 
introduced in this chapter.  

Other  Resources 
Resources explaining the basics about using Linux and UNIX are quite 
numerous.  Some of the other resources which mention similar concepts to this 
chapter include 

• The RedHat Manuals 
RedHat 6.1 comes with three manuals.  This chapter refers to some of these 
manuals as a source for more information. 

• Online lecture 4 
Included on the 85321 website/CD-ROM this lecture with slides and audio 
covers complementary material to this chapter. 

• Linux Installation and Getting Started Guide 
One of the guides included with the Linux Documentation Project includes 
some basic information.  A copy of the LDP is available on the 85321 
website/CD-ROM. 

What you need to learn 
All of the concepts and material you will use to learn how to use Linux is not 
included in this book.  Throughout this chapter you will be referred a 
collection of documents and web pages.  It is important that you actually read 
this material and more importantly you should attempt to practice the 
commands and practices you learn about.  If you don’t use it you lose it. 



85321, Systems Administration                                                                               Chapter 3:  Using UNIX 

David Jones (20.01.00)                                                                                                            Page 67 

In order to be able to really understand the material introduced later in this 
chapter and to be able to perform the required tasks with a minimum of effort 
you MUST become familiar with the following 

• How to get around the Linux file hierarchy. 
Using the GUI "explorer-like" tools provided by Gnome and KDE are not 
sufficient.  You must be familiar with using commands like cd ls mkdir rm 
ls cp 

• How to get the most out of the user interface you are provided with. 
Making use of the GUI, while not a replacement for the command line, will 
make some task easier. 

• Be able to use simple command line tools 
I’m repeating it, just in case you ignored it the first time.  You MUST BE 
ABLE to use the simple UNIX commands such as ls cd, mkdir rm ls cp etc 

• Be able to use the vi editor. 
As with the UNIX command line many of you will question why you need 
to use vi.  The simple reason is that it will make your life much easier later 
in the semester if you learn how to use vi now. 

• Understand the Linux file permissions system. 
This is especially essential.  An understanding of the Linux file 
permissions system is an absolute necessity for when you move onto the 
more complex Systems Administration concepts introduced in later 
chapters.  If you don’t understand this now you will have major problems 
later on. 

• Be able to manipulate and view the processes currently running. 
As with file permissions the ability to manipulate and view the processes 
on a Linux box is an essential skill for a Systems Administrator. 

Introductory UNIX 
Five years ago this section used to be quite easy for the majority of people 
reading this text.  However, since then the explosion in Windows and other 
GUIs means that most people have little or no experience with using the 
command line.  Some of you may not even now what the command line is!!!   

The command line is a name given to the text-based interface which was 
common a few years ago and is still present in the form of the MS-DOS 
prompt in the Windows world and command-line shells in the UNIX world.  
This interface uses a process something like this 

• computer displays a prompt 

• use types a command, usually in the format 
 command_name a list of parameters 

• computer tries to carry out that command and displays any output 

• computer displays a prompt again (and we loop back to the top) 

I’m sorry to say but as a Systems Administrator you have to know how to use 
the command line.  This means you have to forget about that nice GUI 



85321, Systems Administration                                                                               Chapter 3:  Using UNIX 

David Jones (20.01.00)                                                                                                            Page 68 

provided by Explorer and start to understand the structure of files and 
directories used by Linux. 

Why do I need to know the command line? 

Some possible answers to this question include 

• The GUI isn’t always available. 
Unlike Windows NT a GUI is not a compulsory part of UNIX.  This is one 
of the reasons why a small 386 running Linux can act as the server for a 
small organisation.  It also means that there will be times as a Systems 
Administrator that you will have to perform tasks without a GUI.  Those 
times are generally when something has broken.  You won’t have the time 
to learn how to use the command-line then, take the time to do it now. 

• The command line is often more efficient and powerful. 
There are a wide number of tasks which you will have to perform in your 
computing career that are not suited to using a GUI.  These tasks can be 
done quicker and easier using the command line. 

The last reason for those of you studying 85321 is that your ability to use the 
command line is assessable.  If you don’t know how to use it you will lose 
marks. 

How do I learn all this stuff? 

The simple answer is practice. 

You can’t learn this material without experience.  First you need to read and 
listen to the material pointed to below.  Then you must take the time to 
perform the tasks set and also possible a number of others until you are 
comfortable with using the command line. 

Taking the time to do this now will save you time later. 

Basic UNIX 
 

There is a wide range of material on the Internet which will introduce you 
to the basics of using UNIX.  The following is a list of some of those 
available from the 85321 Website/CD-ROM.  Please use the resources 
which best suit you 

7.1. Online Lecture 2 
Produced for the 1999 offering of 85321 this lecture covers using the 
command line, vi and the file hierarchy 

7.2. The Linux Installation and Getting Started Guide 
This guide was produced as part of the Linux Documentation Project (a 
mirror of this project is included on the 85321 Website/CD-ROM).  It 
has a Linux tutorial which covers much of the basic material 



85321, Systems Administration                                                                               Chapter 3:  Using UNIX 

David Jones (20.01.00)                                                                                                            Page 69 

7.3. The Red Hat Linux Getting Started Guide 
Produced by Red Hat and included on the 85321 Website/CD-ROM in 
PDF and HTML formats this guide also covers much of the introductory 
material you will need. 

Exercises 

3.1. What UNIX commands would you use to  
- change to your home directory  
- display the list of files in the current directory  
- display my name is fred  onto the screen  
- copy the file tmp.dat  from the current directory to the directory data 
underneath your home directory and after the file has been copied delete it  

3.2. What will the following UNIX commands do? Don’t execute a UNIX 
command if you aren’t sure what it is going to do. In particular do not try 
to execute the first command below.  
rmdir ~   
cat /etc/passwd   
ls ../../fred/doc/tmp   

3.3. Indicate which of the following paths are full or relative  
   a./root/                      b.../root/            c./usr/../root               d./home/david/  

3.4. Assuming you are currently in the /home/david/tmp/ directory write the full 
path of your final location if you perform the following commands  
   a.cd ../85321/         b.cd /usr/lib    c.cd ~/85321  

3.5. Answer the following questions  
   a.Where would you find the home directory for the root user?  
   b.Where would you store some temporary files?  
   c.Where do you normally find the home directories of "normal" users?  
   d.Assuming you were currently in the directory containing the boot                               
configuration files, how would you change into the directory containing                              
the system configuration files and scripts?  

UNIX Commands are programs 

The UNIX commands that have been introduced so far are stored on a UNIX 
computer as executable files. All the commands on a UNIX systems are either 
stored on the hard-drive as executable files or are understood by a shell (more 
on these in a later chapter).   

Most of the standard commands will be stored in standard binary directories 
such as /bin /usr/bin /usr/local/bin .  On my system running RedHat 
version 6.1 there are 1494 different files in the directories /bin, /usr/bin 
and /usr/sbin.  Which means over 1494 different commands (or there 
abouts). 



85321, Systems Administration                                                                               Chapter 3:  Using UNIX 

David Jones (20.01.00)                                                                                                            Page 70 

vi  
A major task of any user of a computer is editing text files.  For a Systems 
Administrator of a UNIX system manipulation of text files is a common task 
due to many of the system configuration files being text files.  The most 
common, screen-based UNIX editor is vi.  The mention of vi sends shudders 
through the spines of some people, while other people love it with a passion. 
vi is difficult to learn, however it is also an extremely 
powerful editor which can save a Systems Administrator a great 
deal of time. 

As you progress through this subject you will need an editor. vi is an 
anachronistic antique of an editor hated by most people. So why should you 
use it? Reasons include  

• it is very powerful, 
How many editors do you know that can take the first 20 characters of 
every line in a file and swap them with the second set of 20 characters 
(something I’ve had to do)  

• it is the only screen editor available on every UNIX system  

• There will be times when a Systems Administrator cannot use a full screen 
editor. At times like this you must resort to single line editors like ed and 
ex . vi  grew out of the ex editor and so uses many of the same commands. 
Learning and using these commands in vi can save you time later on.  

As a result of all this it is strongly suggested that you use vi wherever possible 
in studying for this unit.  Early on you will find using vi a hassle but sticking 
with it will be worthwhile in the end. 

An introduction to vi   

Most people when confronted with vi for the first time are put off by its 
completely foreign nature and lack of any queues about what to do.  vi actually 
uses a very simple "model of operation". Central to this is the fact that vi is a 
modal editor.  This means vi has a number of different modes and the same 
action can have completely different meaning in different modes. 

vi modes 

vi can be said to have three modes 

• command mode 
This is the default mode vi is in when you start it up.  In this mode most of 
the keys on the keyboard perform vi commands.  For example, hitting the e 
key during vi command mode moves the cursor onto the next word.  Use 
the list of vi commands in any of the vi command references discussed 
below to find out more. 

• insert mode 
This is the mode in which vi behaves most like other editors.  If you hit the 
k key it will insert k into the current location of the cursor and move the 
cursor on. 



85321, Systems Administration                                                                               Chapter 3:  Using UNIX 

David Jones (20.01.00)                                                                                                            Page 71 

• ex mode 
In ex (sometimes called colon mode) you get to access a range of 
commands from the ex editor (and you thought vi was hard to use).  A 
common one you will use is :wq which writes/saves the current file and 
then quits vi (wq). 

vi Transitions 

Knowing about the vi modes is no good unless you know how to go from one 
mode to another.  For example, you can’t actually type anything into a text file 
you are creating without knowing how to go from command mode to insert 
mode.  Common transitions include 

• command to insert 
A number of vi commands take you from command to insert modes (e.g. i 
o O) 

• insert to command 
You’ll do this transition when you want to save a file (usually).  Hitting the 
ESC key is usually enough to achieve this 

• command to ex 
Simply hitting the : (colon) key will  put you into ex mode.  You will know 
this because the colon will appear at the bottom of the screen. 

• ex to command 
Simply hitting enter at the end of an ex command takes you back into 
command mode. 

Using vi 
 

The section for week 2 in the Link database on the 85321 Web page 
contains a number of resources which introduce you to vi.  This includes the 
4th online lecture which has a number of slides and examples of using vi. 

vi, vim and ^Ms 

A common problem in the last couple of years for 85321 students has shown 
itself up as shell scripts which can’t run (you’ll be getting to shell scripts in a 
couple of weeks).  The problem usually occurs when the student copies a text 
file created under Windows to Linux.  The cause of the problem is that UNIX 
and Microsoft indicate the end of the line in different ways 

• carriage return, line-feed 
Used by Microsoft operating systems 

• line feed 
Use by Linux. 

The extra character, the carriage return, causes problems in some situations, 
e.g. When you want to run the text file as a shell script. 



85321, Systems Administration                                                                               Chapter 3:  Using UNIX 

David Jones (20.01.00)                                                                                                            Page 72 

The solution is to remove the extra characters.  One method is to use vi.  The 
trouble is that by default vim, the version of vi on Linux, is smart enough to 
hide the carriage returns. 

If you have a text file, which has carriage returns in it, and you want to see the 
carriage returns you have to do the following 

           vi -b filename 

The -b causes vi to work in binary mode and you will now be able to see the 
carriage returns which look like ^M and appear at the end of the line.  Carriage 
return is actually one character.  ^M is the standard UNIX way of representing 
a single control character.  If you try to delete the ^M with the x command you 
will find that there is only on character. 

To delete all the carriage returns in a file you can use the following command 

           1,$s/^M//g 

Where you don’t type the ^ character and then the M character.  Instead you 
hold the CONTROL key down and hit the c key and then hit the m key.  What 
this command does should become clear when we talk about regular 
expressions in a later chapter. 

UNIX commands  
A UNIX system comes with hundreds of executable commands and programs . 
Typically each of these programs carries out a particular job and will usually 
have some obscure and obtuse name that means nothing to the uninitiated.   
That said the names of most of these commands actually do make some sort of 
sense once you have a bit of knowledge. 

In the following you are introduced to the philosophy and format of UNIX 
commands.  It is also emphasised that there is almost always going to be a 
UNIX command (or a combination of them) to perform the task you wish to 
accomplish.  You need to become familiar with how to find out about the 
available commands. 

Philosophy of UNIX commands  

There are no set rules about UNIX commands however there is a UNIX 
philosophy that is used by many of the commands.  

• small is beautiful, 
UNIX provides the mechanisms to join commands together so commands 
should do one thing well.  

• 10 percent of the work solves 90 percent of the problems, 
UNIX was never designed to solve all problems, it was designed to solve 
most requirements without too much hassle on the programmer’s part.  

• solve the problem, not the machine,  
Commands should ignore any machine specific information and be 
portable.  



85321, Systems Administration                                                                               Chapter 3:  Using UNIX 

David Jones (20.01.00)                                                                                                            Page 73 

• solve at the right level, and you will only have to do it once. 
The key to UNIX problem solving is only to do it once e.g. pattern 
matching is only implemented once, in the shell, not in every command.  

One of the central tenants of the UNIX command philosophy is to provide a 
flexible, adaptable toolbox approach to solving problems.  The idea is not to 
provide a single large program which does everything.  Instead you have small, 
purpose built commands which can be easily combined to perform much larger 
tasks.  An evolution rather than creation approach to solving problems. 

UNIX command format  

UNIX commands all use the following format  

 command_name -switches parameter_list  

Component Explanation 

command_name  the name of the actual command, generally this is the name of 
the executable program that is the command  

- switches  The - symbol is used to indicate a switch. A switch modifies 
the operation of a command.  

parameter_list  the list of parameters (or arguments) that the command will 
operate on, could be 0, 1 or more parameters, parameters are 
separated by white space characters (space, TAB)  

T a b l e  3 . 1  
U N I X  c o m m a n d  f o r m a t   

Please note: there must be spaces between each component of a UNIX 
command line.  Under MS-DOS it was possible to perform commands like  

• cd/dos 
Change the current directory into the /dos directory. 

Under UNIX this command will be interpreted as run the command cd/dos.  
This means UNIX will normally try to find an executable file called cd/dos.  
The UNIX shell (the command which interprets the command line and tries to 
execute commands) uses the space character to tell the difference between the 
different components of the command line.  Under UNIX the command would 
have to be 

• cd /dos 

Example commands  

• ls -l  
The switch -l  is used to modify the action of the ls command so that it 
displays a long listing of each file.  

• ls -l /etc/passwd / /var  
Commands can take multiple parameters.  

• ls -ld /etc/passwd / /var  
Multiple switches can also be used.  



85321, Systems Administration                                                                               Chapter 3:  Using UNIX 

David Jones (20.01.00)                                                                                                            Page 74 

Linux commands take multiple arguments 

Unlike MS-DOS, UNIX commands can take multiple 
arguments. 

However, the multiple parameters must be separated by space 
characters. 

Exercises 

3.6. One of your users has created a file called -tmp? (The command cat 

/etc/passwd > -tmp  will do it.) They want to get rid of it but can’t. Why 
might the user have difficulty removing this file? How would you remove 
the file?  You might have to refer to the online help section below to find 
the answer. 

A command for everything  

A fairly intelligent and experienced would be computer professional has just 
started using UNIX seriously (he was a student in the very first offering of this 
subject). He gets to a stage where he wants to change the name of some files.  

Being an MS-DOS junkie from way back what command does he look for? 
The rename command of course. It doesn’t work! "That’s a bit silly!", he 
thinks, "You would think that UNIX would have a rename command."  
It just so happens that this person has just completed a C programming subject 
in which one of the assignments was to write a rename command. So he 
spends the next day trying to write and compile this program. After much toil 
and trouble he succeeds and follows good administration policy and informs 
all the other students of this brand new wonderful program he has written. He 
goes into great detail on how to use the command and all the nice features it 
includes.  

They all write back to tell him about the UNIX command mv (the move 
command) that is the UNIX command that is equivalent to rename.  

The moral of the story  

The moral of this story is that if you want to do something under UNIX, then 
chances are that there is already a command to do it. All you have to do is 
work out what it is.  

Online help  
UNIX comes with online help called man pages. Man pages are short 
references for commands and files on a UNIX system.  They are not designed 
as a means by which newcomers to UNIX  can  learn the commands.  Instead 
they are a reference to the command to be used by someone who understands 
the basics of UNIX and UNIX commands. 

The man pages are divided into different sections. Table 3.2 shows the sections 
that Linux uses. Different versions of Linux use slightly different sections.  



85321, Systems Administration                                                                               Chapter 3:  Using UNIX 

David Jones (20.01.00)                                                                                                            Page 75 

 

Section number Contents 

1 user commands  

2 system calls  

3 Library functions 

3c  standard C library 

3s standard I/O library 

3m arithmetic library 

3f Fortran library 

3x special libraries 

4 special files  

5 file formats  

6 games  

7 miscellaneous  

8 administration and privileged commands  

T a b l e  3 . 2  
M a n u a l  P a g e  S e c t i o n s  

Using the manual pages  

To examine the manual page for a particular command or file you use the man 
command. For example if you wanted to examine the man page for the man 
command you would execute the command man man.  

Is there a man page for...  

The command man -k keyword will search for all the manual pages that 
contain keyword in its synopsis. The commands whatis and apropos  perform 
similar tasks.  

Rather than search through all the manual pages Linux maintains a keyword 
database in the file /usr/man/whatis . If at any stage you add new manual 
pages you should rebuild this database using the makewhatis command.  
The -K switch for the man command forces it to search through all of the 
manual page for the work.  You should realise that with the size and number of 
manual pages this operation can take quite a while. 

If there is a file you wish to find out the purpose for you might want to try the 
–f option of the man command. 

man page format  

Each manual page is stored in its own file formatted (under Linux) using the 
groff  command (which is the GNU version of nroff). The files can be located 



85321, Systems Administration                                                                               Chapter 3:  Using UNIX 

David Jones (20.01.00)                                                                                                            Page 76 

in a number of different directories with the main manual pages located under 
the /usr/man  directory.  

Under /usr/man  you will find directories with names mann and catn. The n is 
a number that indicates the section of the manual. The files in the man 
directories contain the groff input for each manual page. The files in the cat 
directories contain the output of the groff command for each manual page.  

Generally when you use the man command the groff  input is formatted and 
displayed on the screen. If space permits the output will be written into the 
appropriate cat directory.  

3.7. What commands would you use to do the following  
 1.View mkdir(2)  
 2.Find the command to print a file  
 3.How many different manual pages exist for  mkdir  
 4.Describe the contents of section 8 of the manual pages.  

HTML versions of Manual Pages 

The 85321 website contains a manual page section which contains a collection 
of manual pages in HTML format. 

Some UNIX commands  
There are simply too many UNIX commands for this chapter to introduce all, 
or even most of them.  The aim of the following is to show you some of the 
basic commands that are available.  To find the remainder you will have to 
discover them for yourself.  One method for becoming more familiar with the 
available commands is to  

• look at the filenames in the /bin /usr/bin /usr/local/bin 
directories, 
These are the “binary” directories which contain the executable programs 
which are the UNIX commands. 

• take the filename and look at the manual page 
Each of the commands will have a manual page which will explain what 
the command does and how you can use it. 

The commands introduced in this table can be divided into categories based on 
their purpose 

• identification commands, 
These commands identify the user or the system. 

• simple commands, 
Perform some simple, non-specific task. 

• filters. 
Filters take some input, modify it and then output it. 



85321, Systems Administration                                                                               Chapter 3:  Using UNIX 

David Jones (20.01.00)                                                                                                            Page 77 

 

 

Command Purpose Command Purpose 

date Display the current 
time and date  

who display who is 
currently on the 
computer  

banner Display a large 
banner  

cal display a calendar  

whoami Displays your 
current username  

cat display the contents 
of a file  

more  and less Display the contents 
of a file a page at a 
time  

head display the first few 
lines of a file  

tail Display the last few 
lines of a file  

sort sort the content of a 
file into order  

uniq Remove duplicate 
lines from a file  

cut remove columns of 
characters from a file 

paste join columns of files 
together  

tr translate specific 
characters  

grep Display all lines in a 
file containing a 
patter  

wc count the number of 
characters, words 
and lines in a file  

T a b l e  3 . 3  
B a s i c  U N I X  c o m m a n d s  

Identification Commands 

who  

Displays a list of people currently logged onto the computer. 

dinbig:/$ who 
david    tty1     Feb  5 14:27    
           

whoami  

Displays who the computer thinks you are currently logged in as. 

dinbig:/$ whoami  
david      



85321, Systems Administration                                                                               Chapter 3:  Using UNIX 

David Jones (20.01.00)                                                                                                            Page 78 

uname 

Displays information about the operating system and the computer on which it 
is running 

[david@beldin david]$ uname 
Linux 
[david@beldin david]$ uname –a  
Linux beldin.cqu.edu.au 2.0.31 #1 Sun Nov 9 21:45:23 EST 1997 i586 
unknown 

Simple commands  

The following commands are simple commands that perform one particular job 
that might be of use to you at some stage. There are many others you’ll make 
use of.  

Only simple examples of the commands will be shown below. Many of these 
commands have extra switches that allow them to perform other tasks. You 
will have to refer to the manual pages for the commands to find out this 
information.  

date  

Displays the current date and time according to the computer. 

dinbig:/$ date  
Thu Feb  8 16:57:05 EST 1996 

banner  

Creates a banner with supplied text. 

dinbig:/$ banner -w30 a  
          ## 
        ######  ## 
       ##    ## ### 
        #    #     # 
        ##  ##   ## 
       ########### 
       ## 
          

cal  

Display a calendar for a specific month. (The Linux version might not work). 

bash$ cal 1 1996  
   January 1996 
 S  M Tu  W Th  F  S 
    1  2  3  4  5  6 
 7  8  9 10 11 12 13 
14 15 16 17 18 19 20 
21 22 23 24 25 26 27 
28 29 30 31      
  



85321, Systems Administration                                                                               Chapter 3:  Using UNIX 

David Jones (20.01.00)                                                                                                            Page 79 

Filters  

Filters are UNIX commands that take input or the contents of a file, modify 
that content and then display the result on output. Later on in this chapter you 
will be shown how you can combine these filters together to manipulate text.  

cat 

The simplest filter. cat doesn’t perform any modification on the information 
passed through it. 

bash$ cat /etc/motd  
Linux 1.2.13.   

more and less  

These filters display their input one page at a time. At the end of each page 
they pause and wait for the user to hit a key. less is a more complex filter and 
supports a number of other features. Refer to the man page for the commands 
for more information.  

head and tail  

head  and tail  allow you to view the first few lines or the last few lines of a 
file.  

Examples  

• head chap1.html  
Display the first 10 lines of chap1.html  

• tail chap1.html  
display the last 10 lines of chap1.html  

• head -c 100 chap1.html  
display the first 100 bytes of chap1.html  

• head -n 50 chap1.html  
display the first 50 lines of chap1.html  

• tail -c 95 chap1.html  
display the last 100 bytes of chap1.html sort  

sort 

The sort command is used to sort data using a number of different criteria 
outlined in the following table.  



85321, Systems Administration                                                                               Chapter 3:  Using UNIX 

David Jones (20.01.00)                                                                                                            Page 80 

 

Switch Result 

-r sort in descending order (default is ascending)  

-n sort as numbers (default is as ASCII characters) 
When sorting numbers as numbers 100 is greater 
than 5. When sorting them as characters 5 is 
greater than 100.  

-u eliminate duplicate lines  

+numbern skip number fields  

-t character specify character as the field delimiter  

T a b l e  3 . 4  
S w i t c h e s  f o r  t h e  s o r t  c o m m a n d  

Examples  

The following examples all work with the /etc/passwd file. /etc/passwd  is 
the file that stores information about all the users of a UNIX machine. It is a 
text file with each line divided into 7 fields. Each field is separated by a : 
character. Use the cat command to view the contents of the file.  

• sort /etc/passwd  
sort in order based on the whole line 

• sort -r /etc/passwd  
reverse the order of the sort  

• sort +2n -t: /etc/passwd  
sort on third field, where field delimiter is : (skip the first two fields)  

• sort +2n -t: -n /etc/passwd  
same sort but treat the field as numbers not ASCII characters  

uniq   

uniq is used to find or remove and duplicate lines from a file and display 
what is left onto the screen. A duplicate to uniq is where consecutive lines 
match exactly. sort is often used to get the duplicate lines in a file into 
consecutive order before passing it to uniq.  Passing a file from one command 
to another is achieved using I/O redirection which is explained in a later 
chapter.  

Examples  

• uniq names  
remove duplicate lines from names and display them on the screen  

• uniq names uniq.names  
remove duplicates lines from names and put them into uniq.names  

• uniq -d names  
display all duplicate lines  



85321, Systems Administration                                                                               Chapter 3:  Using UNIX 

David Jones (20.01.00)                                                                                                            Page 81 

tr   

Used to translate specified characters into other characters. tr is used in 
conjunction with I/O redirection which is explained in the next chapter. In the 
examples below the < character is an I/O redirection character.  

Examples  

• tr a z < /etc/passwd  
translate all a’s to z’s  in /etc/passwd  and display on the screen  

• tr ’[A-Z]’ ’[a-z]’ < /etc/passwd  
translate any character in between A-Z into the equivalent character 
between a-z. (make all upper-case characters lower case)  

• tr -d ’ ’ < /etc/passwd  
delete any single space characters from the file  

cut   

Is used to "cut out" fields from a file. Try cut -c5-10 /etc/passwd . This 
will display all the characters between the 5th and 10th on every line of the file 
/etc/passwd . The following table explains some of the switches for cut  
 

Switch Purpose 

-c RANGE  cut out the characters in RANGE  

-d character  specify that the field delimiter is character  

-f RANGE  cut out the fields in RANGE  

T a b l e  3 . 5  
S w i t c h e s  f o r  t h e  c u t  c o m m a n d   

RANGE used by the -f and -c switches can take the following forms  

• number-  
get all from character or field number to the end of the line  

• number- number2 
get all from character or field number to character or field number2  

• number, number2 
get characters or fields number and number2  

And combinations of the above.  

Examples  

• cut -c1 /etc/passwd  
get the first character from every line  

• cut -c1,5,10-20 /etc/passwd  
get the first, fifth character and every character between 10 and 20  



85321, Systems Administration                                                                               Chapter 3:  Using UNIX 

David Jones (20.01.00)                                                                                                            Page 82 

• cut -d: -f2 /etc/passwd  
get the second field  

• cut -d: -f3- /etc/passwd  
get all fields from the third on  

paste   

This command performs the opposite task to cut. It puts lines back together.  
Assume we have two files  

names  
george 
fred 
david 
janet 
 

addresses  
55 Aim avenue 
1005 Marks road 
5 Thompson Street 
43 Pedwell road 

 

To put them back together we’d use the command  

bash$ paste names addresses  
george  55 Aim avenue 
fred    1005 Marks road 
david   5 Thompson Street 
janet   43 Pedwell road 
       

The two fields have been separated by a tab character. To use a different 
character you use the -d switch. 

bash$ paste -d: names addresses  
george:55 Aim avenue 
fred:1005 Marks road 
david:5 Thompson Street 
janet:43 Pedwell road 
       

To paste together lines from the same file you use the -s switch. 

bash$  paste -s names  
george  fred    david   janet      
  

grep  

grep stands for Global Regular Expression Pattern match. It is used to search 
a file for a particular pattern of characters. 

• grep david /etc/passwd 

display any line from /etc/passwd that contains david 

To get the real power out of grep you need to be familiar with regular 
expressions which are discussed in more detail in a later chapter.  



85321, Systems Administration                                                                               Chapter 3:  Using UNIX 

David Jones (20.01.00)                                                                                                            Page 83 

wc  

Used to count the number of characters, words and lines in a file. By default it 
displays all three. Using the switches -c -w -l will display the number of 
characters, words and lines respectively. 

bash$ wc /etc/passwd  
  19      20     697 /etc/passwd  
bash$ wc -c /etc/passwd  
   697 /etc/passwd  
bash$ wc -w /etc/passwd  
   20 /etc/passwd  
bash$ wc -l /etc/passwd  
   19 /etc/passwd  
  

For the following exercises create a file called phone.book that contains the 
following 

george!2334234!55 Aim avenue 
fred!343423!1005 Marks road 
david!5838434!5 Thompson Street 
janet!33343!43 Pedwell road 
       

The field delimiter for this file is ! and the fields are name, phone number, 
address.  

Exercises 

3.8. What command would you use to (assume you start from the original file 
for every question)  
1.  sort the file on the names  
2.  sort the file in descending order on phone number  
3.  display just the addresses  
4.  change all the ! characters to :  
5.  display the first line from the file  
6.  display the line containing david’s information  
7. What would effect would the following command have  
         paste -d: -s phone.book  

3.9. A University student database system must produce a number of files 
containing information about students in a class. One such example CSV 
file with 6 fields: student number, surname, firstname, grade (F,P,C,D,HD), 
mark and degree code is available from the 85321 website/CD-ROM at the 
URL http://infocom.cqu.edu.au/85321/Resources/Lectures/6/results.csv  
 
Using previous descriptions in the lecture, the 85321 text book and the 
Linux manual pages come up with commands to perform the following 
tasks on this example file  
 1.count the number of students in the class (hint: there is one student per  
    line in the file)  
 2.display the data file one line at a time 
 3.get a list of all the student numbers in the class  
 4.Find all students who received HDs  



85321, Systems Administration                                                                               Chapter 3:  Using UNIX 

David Jones (20.01.00)                                                                                                            Page 84 

Getting more out of filters 
The filters are a prime example of good UNIX commands. They do one job 
well and are designed to be chained together. To get the most out of filters you 
combine them together in long chains of commands.  How this is achieved will 
be examined in a later chapter when the concept of I/O redirection is 
introduced. 

I/O redirection allows you to count the number of people on your computer 
who have usernames starting with d by using the grep command to find all the 
lines in the /etc/passwd file that start with d and pass the output of that 
command to the wc command to count the number of matching lines that grep 
found.  

How you do this will be explained next week.  

Conclusions  
In this chapter you have been provided a brief introduction to the philosophy 
and format of UNIX commands. In addition some simple commands have been 
introduced including  

• account related commands 
login passwd exit  

• file and directory manipulation commands 
cd ls rm mv mkdir  

• some basic commands 
date who banner cal  

• some filters 
cat more less head tail sort uniq cut paste tr grep  

A Systems Administrator has to be a "guru". An expert user of their system. A 
Systems Administrator should not only to be able to get the most out of the 
system but also to be able to explain and assist other users.  



85321, Systems Administration Chapter 4: The File Hierarchy 

David Jones (20.01.00) Page 85 

Chapter 
The File Hierarchy 

Introduction  

Why?  

Like all good operating systems, UNIX allows you the privilege of storing 
information indefinitely (or at least until the next disk crash) in abstract data 
containers called files. The organisation, placement and usage of these files 
comes under the general umbrella of the file hierarchy.  As a system 
administrator, you will need to be very familiar with the file hierarchy.  You 
will use it on a day to day basis as you  maintain the system, install software 
and manage user accounts.   

 At a first glance, the file hierarchy structure of a typical Linux host (we will 
use Linux for the basis of our discussion) may appear to have been devised by 
a demented genius who’d been remiss with their medication. Why, for 
example, does the root directory contain something like:   

 
bin         etc         lost+found  root        usr 
boot        home        mnt         sbin        var 
dev         lib         proc        tmp 

Why was it done like this?   

Historically, the location of certain files and utilities has not always been 
standard (or fixed). This has lead to problems with development and upgrading 
between different "distributions" of Linux [Linux is distributed from many 
sources, two major sources are the Slackware and Red Hat package sets]. The 
Linux directory structure (or file hierarchy) was based on existing flavours of 
UNIX, but as it evolved, certain inconsistencies developed. These were often 
small things like the location (or placement) of certain configuration files, but 
it resulted in difficulties porting software from host to host.   

To combat this, a file standard was developed. This is an evolving process, to 
date resulting in a fairly static model for the Linux file hierarchy. In this 
chapter, we will examine how the Linux file hierarchy is structured, how each 
component relates to the overall OS and why certain files are placed in certain 
locations.  



85321, Systems Administration Chapter 4: The File Hierarchy 

David Jones (20.01.00) Page 86 

 

Linux File System Standard 

 

The location and purposes of files and directories on a Linux machine are 
defined by the Linux File Hierarchy Standard.  The offical website for the 
Linux File Hierarchy Standard is http://www.pathname.com/fhs/  

The impor tant sections  

The root of the problem  

The top level of the Linux file hierarchy is referred to as the root (or /). The 
root directory typically contains several other directories including:   

 

Directory Contains 

bin/ Required Boot-time binaries  

boot/ Boot configuration files for the OS loader and kernel image 

dev / Device files  

etc/ System configuration files and scripts  

home/ User/Sub branch directories  

lib/ Main OS shared libraries and kernel modules  

Lost+found/ Storage directory for "recovered" files  

mnt/ Temporary point to connect devices to  

proc/ Pseudo directory structure containing information about the 
kernel, currently running processes and resource allocation  

root/ Linux (non-standard) home directory for the root user. Alternate 
location being the / directory itself  

sbin/ System administration binaries and tools  

tmp/ Location of temporary files r 

usr/ Difficult to define - it contains almost everything else including 
local binaries, libraries, applications and packages (including X 
Windows)  

var/ Variable data, usually machine specific. Includes spool 
directories for mail and news  

T a b l e  4 . 1  
M a j o r  D i r e c t o r i e s  

Generally, the root should not contain any additional files - it is considered bad 
form to create other directories off the root, nor should any other files be 
placed there.  



85321, Systems Administration Chapter 4: The File Hierarchy 

David Jones (20.01.00) Page 87 

Why root? 

The name “root” is based on the analogous relationship between the UNIX 
files system structure and a tree!  Quite simply, the file hierarchy is an inverted 
tree. 

I can personally never visiualise an upside down tree – what 
this phrase really means is that the “top” of the file heirarchy is 
at one point, like the root of a tree, the bottom is spread out, 
like the branches of a tree.  This is probably a silly analogy 
because if you turn a tree upside down, you have lots of 
spreading roots, dirt and several thousand very unhappy 
worms!  

Every part of the file system eventually can be traced back to one central point, 
the root.  The concept of a “root” structure has now been (partially) adopted by 
other operating systems such as Windows NT.  However, unlike other 
operatings systems, UNIX doesn't have any concept of  “drives”.  While this 
will be explained in detail in a later chapter, it is important to be aware of the 
following: 

The file system may be spread over several physical devices; different parts of 
the file heirarchy may exist on totally separate partitions, hard disks, CD-
ROMs, network file system shares, floppy disks and other devices. 

This separation is transparent to the file system heirarchy, user and 
applications. 

Different “parts” of the file system will be “connected” (or mounted) at 
startup; other parts will be dynamically attached as required. 

The remainder of this chapter examines some of the more important directory 
structures in the Linux file hierarchy.  

Homes for  users  

Every user needs a home...  

The /home  directory structure contains the the home directories for most 
login-enabled users (some notable exceptions being the root user and (on some 
systems) the www/web user). While most small systems will contain user 
directories directly off the /home  directory (for example, /home/jamiesob ), 
on larger systems is common to subdivide the home structure based on classes 
(or groups) of users, for example:   
 
        /home/admin             # Administrators   
        /home/finance           # Finance users   
        /home/humanres          # Human Resource users   
        /home/mgr               # Managers   
        /home/staff             # Other people   



85321, Systems Administration Chapter 4: The File Hierarchy 

David Jones (20.01.00) Page 88 

Other homes?  

/root  is the home directory for the root user. If, for some strange reason, the 
/root directory doesn’t exist, then the root user will be logged in in the / 

directory - this is actually the traditional location for root users.   
There is some debate as to allowing the root user to have a special directory as 
their login point - this idea encourages the root user to set up their .profile , 
use "user" programs like elm, tin and netscape  (programs which require a 
home directory in which to place certain configuration files) and generally use 
the root account as a beefed up user account. A system administrator should 
never use the root account for day to day user-type interaction; the root 
account should only be used for system administration purposes only.   

 

Be aware that you must be extremely careful when allowing a 
user to have a home directory in a location other than the /home 
branch.  The problem occurs when you, as a system 
administrator, have to back-up the system - it is easy to miss a 
home directory if it isn’t grouped with others in a common 
branch (like /home).  

/usr and /var  

And the difference is...  

It is often slightly confusing to see that /usr and /var  both contain similar 
directories:   

 

/usr 
X11R6             games             libexec           src 
bin               i486-linux-libc5  local             tmp 
dict              include           man 
doc               info              sbin 
etc               lib               share 

/var 
catman    local     log       preserve  spool 
lib       lock      nis       run       tmp 

 

It becomes even more confusing when you start examining the the maze of 
links which intermingle the two major branches.   

Links are a way of referencing a file or directory by many 
names and many locations within the file hierarchy.  They are 
effectively like "pointers" to files - think of them as like leaving 
a post-it note saying "see this file".  Links will be explained in 
greater detail in the next chapter.  

To put it simply, /var is for VARiable data/files. /usr is for USeR accessible 
data, programs and libraries. Unfortunately, history has confused things - files 
which should have been placed in the /usr  branch have been located in the 



85321, Systems Administration Chapter 4: The File Hierarchy 

David Jones (20.01.00) Page 89 

/var  branch and vice versa. Thus to "correct" things, a series of links have 
been put in place. Why the reason for the separation? Does it matter. The 
answer is: Yes, but No :)   

Yes in the sense that the file standard dictates that the /usr branch should be 
able to be mounted (another way of saying "attached" to the file hierarchy - 
this will be covered in the next chapter) READ ONLY  (thus can’t contain 
variable data). The reasons for this are historical and came about because of 
something called NFS exporting.   

NFS exporting is the process of one machine (a server) 
"exporting" its copy of the /usr structure (and others) to the 
network for other systems to use.  

If several systems were "sharing" the same /usr  structure, it would not be a 
good idea for them all to be writing logs and variable data to the same area! It 
is also used because minimal installations of Linux can use the /usr branch 
directly from the CDROM (a read-only device).   

However, it is "No" in the sense that:   
�

/usr  is usually mounted READ-WRITE -EXECUTE on Linux systems 
anyway   

� In the author’s experience, exporting /usr READ-ONLY via NFS isn’t 
entirely successful without making some very non-standard modifications 
to the file hierarchy!   

The following are a few highlights of the /var  and /usr directory branches:   

/usr/local  

All software that is installed on a system after the operating system package 
itself should be placed in the /usr/local  directory. Binary files should be 
located in the /usr/local/bin  (generally /usr/local/bin  should be 
included in a user’s PATH setting). By placing all installed software in this 
branch, it makes backups and upgrades of the system far easier - the system 
administrator can back-up and restore the entire /usr/local  system with 
more ease than backing-up and restoring software packages from multiple 
branches (i.e.. /usr/src , /usr/bin  etc.).   
An example of a /usr/local  directory is listed below:   

bin       games         lib           rsynth            cern 
man       sbin          volume-1.11   info 
mpeg      speak         www           etc               java           
netscape  src   

As you can see, there are a few standard directories (bin ,  lib and src ) as 
well as some that contain installed programs.   



85321, Systems Administration Chapter 4: The File Hierarchy 

David Jones (20.01.00) Page 90 

lib, include and src  

Linux is a very popular platform for C/C++, Java  and Perl  program 
development. As we will discuss in later chapters, Linux also allows the 
system administrator to actually modify and recompile the kernel. Because of 
this, compilers, libraries and source directories are treated as "core" elements 
of the file hierarchy structure.   

The /usr  structure plays host to three important directories:   

/usr/include  holds most of the standard C/C++ header files - this directory 
will be referred to as the primary include directory in most Makefiles.  

Makefiles are special script-like files that are processed by the 
make program for the purposes of compiling, linking and 
building programs.  

/usr/lib  holds most static libraries as well as hosting subdirectories 
containing libraries for other (non C/C++) languages including Perl and TCL. It 
also plays host to configuration information for ldconfig.   

/usr/src  holds the source files for most packages installed on the system. 
This is traditionally the location for the Linux source directory 
(/usr/src/linux ), for example:   

  linux         linux-2.0.31  redhat 

Unlike DOS/Windows based systems, most Linux programs 
usually come as source and are compiled and installed locally  

/var/spool  

This directory has the potential for causing a system administrator a bit of 
trouble as it is used to store (possibly) large volumes of temporary files 
associated with printing, mail and news. /var/spool  may contain something 
like:   

 

at          lp     lpd         mqueue      samba       uucppublic 

cron        mail        rwho        uucp 

 

In this case, there is a printer spool directory called lp  (used 
for storing print request for the printer lp) and a 

/var/spool/mail  directory that contains files for each user’s incoming mail.   

Keep an eye on the space consumed by the files and directories 
found in /var/spool.  If a device (like the printer) isn't 
working or a large volume of e-mail has been sent to the 
system, then much of the hard drive space can be quickly 
consumed by files stored in this location.  



85321, Systems Administration Chapter 4: The File Hierarchy 

David Jones (20.01.00) Page 91 

X Windows  

X-Windows provides UNIX with a very flexible graphical user interface.  
Tracing the X Windows file hierarchy can be very tedious, especially when 
your are trying to locate a particular configuration file or trying to removed a 
stale lock file.  

A lock file is used to stop more than one instance of a program 
executing at once, a stale lock is a lock file that was not 
removed when a program terminated, thus stopping the same 
program from restarting again  

Most of X Windows is located in the /usr structure, with some references 
made to it in the /var  structure.   

Typically, most of the action is in the /usr/X11R6  directory (this is usually an 
alias or link to another directory depending on the release of X11 - the X 
Windows manager). This will contain:   

        bin      doc include  lib      man 

The main X Windows binaries are located in /usr/X11R6/bin.  This may be 
accessed via an alias of /usr/bin/X11  . 

Configuration files for X Windows are located in /usr/X11R6/lib.  To really 
confuse things, the X Windows configuration utility, xf86config, is located 
in /usr/X11R6/bin , while the configuration file it produces is located in 

/etc /X11 (XF86Config )!   

Because of this, it is often very difficult to get an "overall picture" of how X 
Windows is working - my best advice is read up on it before you start 
modifying (or developing with) it.   

Bins  

Which bin?  

A very common mistake amongst first time UNIX users is to incorrectly 
assume that all "bin" directories contain temporary files or files marked for 
deletion. This misunderstanding comes about because:   

� People associate the word "bin" with rubbish   
	 Some unfortunate GUI based operating systems use little icons of "trash 

cans" for the purposes of storing deleted/temporary files.   

However, bin is short for binary - binary or executable files. There are four 
major bin directories (none of which should be used for storing junk files :)   




/bin   
�

/sbin   
�

/usr/bin   


/usr/local/bin   

Why so many?   



85321, Systems Administration Chapter 4: The File Hierarchy 

David Jones (20.01.00) Page 92 

All of the bin directories serve similar but distinct purposes; the division of 
binary files serves several purposes including ease of backups, administration 
and logical separation. Note that while most binaries on Linux systems are 
found in one of these four directories, not all are.   

/bin   

This directory must be present for the OS to boot. It contains utilities used 
during the startup; a typical listing would look something like:   

        Mail           df             gzip           mount          stty 
        arch           dialog         head           mt             su 
        ash            dircolors      hostname       mt-GNU         sync 
        bash           dmesg          ipmask         mv             tar 
        cat            dnsdomainname  kill           netstat        tcsh 
        chgrp          domainname     killall        ping           telnet 
        chmod 

       domainname-yp  ln             ps             touch 
        chown          du             login          pwd            true 
        compress       echo           ls             red            ttysnoops 
        cp             ed             mail           rm             umount 
        cpio    

       false          mailx          rmdir          umssync 
        csh            free           mkdir          setserial      uname 
        cut            ftp            mkfifo         setterm        zcat 
        date           getoptprog     mknod          sh             zsh 
        dd             gunzip         more           sln               

Note that this directory contains the shells and some basic file and text utilities 
(ls, pwd, cut, head, tail, ed  etc). Ideally, the /bin directory will 
contain as few files as possible as this makes it easier to take a direct copy for 
recovery boot/root disks.   

/sbin   

/sbin Literally "System Binaries". This directory contains files that should 
generally only be used by the root user, though the Linux file standard dictates 
that no access restrictions should be placed on normal users to these files. It 
should be noted that the PATH setting for the root user includes /sbin, while it 
is (by default) not included in the PATH of normal users.   

The /sbin directory should contain essential system administration scripts 
and programs, including those concerned with user management, disk 
administration, system event control (restart and shutdown programs) and 
certain networking programs.   

As a general rule, if users need to run a program, then it should not be located 
in /sbin . A typical directory listing of /sbin  looks like:   

        adduser           ifconfig          mkfs.minix        rmmod 
        agetty            init              mklost+found      rmt 
        arp               insmod            mkswap            rootflags 
        badblocks         installpkg        mkxfs             route 
        bdflush           kbdrate           modprobe          runlevel 
        chattr            killall5          mount             setup 
        clock             ksyms             netconfig         setup.tty 
        debugfs           ldconfig          netconfig.color   shutdown 
        depmod            lilo              netconfig.tty     swapdev        
        dosfsck           liloconfig        pidof             swapoff 
        dumpe2fs          liloconfig-color  pkgtool           swapon 
        e2fsck            lsattr            pkgtool.tty       telinit 
        explodepkg        lsmod             plipconfig        tune2fs 
        fdisk             makebootdisk      ramsize           umount 



85321, Systems Administration Chapter 4: The File Hierarchy 

David Jones (20.01.00) Page 93 

        fsck              makepkg           rarp             update 
        fsck.minix        mkdosfs           rdev              vidmode 
        genksyms          mke2fs            reboot            xfsck 
        halt              mkfs             removepkg           

The very important ldconfig  program is also located in /sbin. 
While not commonly used from the shell prompt, ldconfig is 
an essential program for the management of dynamic libraries 
(it is usually executed at boot time). It will often have to be 
manually run after library (and system) upgrades.  

You should also be aware of:   
/usr/sbin - used for non-essential admin tools.   
/usr/local/sbin - locally installed admin tools.   

/usr/bin   

This directory contains most of the user binaries - in other words, programs 
that users will run. It includes standard user applications including editors and 
email clients as well as compilers, games and various network applications.   

A listing of this directory will contain some 400 odd files.  Users should 
definitely have /usr/bin  in their PATH setting.   
/usr/local/bin   

To this point, we have examined directories that contain programs that are (in 
general) part of the actual operating system package. Programs that are 
installed by the system administrator after that point should be placed in 

/usr/local/bin . The main reason for doing this is to make it easier to back 
up installed programs during a system upgrade, or in the worst case, to restore 
a system after a crash.   

The /usr/local/bin  directory should only contain binaries 
and scripts - it should not contain subdirectories or 
configuration files.  

Configuration files, logs and other  bits!  

etc etc etc.  

/etc is one place where the root user will spend a lot of time. It is not only the 
home to the all important passwd file, but contains just about every 
configuration file for a system (including those for networking, X Windows 
and the file system).   

The /etc  branch also contains the skel, X11 and rc.d  directories.   

/etc/skel contains the skeleton user files that are placed in a user’s directory 
when their account is created.   

/etc/X11  contains configuration files for X Windows.   



85321, Systems Administration Chapter 4: The File Hierarchy 

David Jones (20.01.00) Page 94 

/etc/rc.d  is contains rc directories - each directory is given by the name 
rcn.d  (n is the run level) - each directory may contain multiple files that will 
be executed at the particular run level.  A sample listing of a /etc/rc.d 
directory looks something like: 

init.d      rc.local    rc0.d       rc2.d       rc4.d       rc6.d 

rc          rc.sysinit  rc1.d       rc3.d       rc5.d 

Logs  

Linux maintains a particular area in which to place logs (or files which contain 
records of events). This directory is /var/log.   
This directory usually contains:   

cron         lastlog      maillog.2    samba-log.   secure.2     uucp 
cron.1       log.nmb      messages     samba.1      sendmail.st  wtmp 
cron.2       log.smb      messages.1   samba.2      spooler      xferlog 
dmesg        maillog      messages.2   secure       spooler.1    xferlog.1 
httpd        maillog.1    samba        secure.1     spooler.2    xferlog.2 

/proc   

The /proc  directory hierarchy contains files associated with the executing 
kernel.  The files contained in this structure contain information about the state 
of the system’s resource usage (how much memory, swap space and CPU is 
being used), information about each process and various other useful pieces of 
information.  We will examine this directory structure in more depth in later 
chapters.   

The /proc  file system is the main source of information for a 
program called top.  This is a very useful administration tool as 
it displays a "live" readout of the CPU and memory resources 
being used by each process on the system.  

/dev   

We will be discussing /dev in detail in the next chapter, however, for the time 
being, you should be aware that this directory is the primary location for 
special files called device files.   

Conclusion  

Future standards  

Because Linux is a dynamic OS, there will no doubt be changes to its file 
system as well. Two current issues that face Linux are:   

� Porting Linux on to may architectures and requiring a common location for 
hardware independent data files and scripts - the current location is 
/usr/share - this may change.   

� The location of third-party commercial software on Linux systems - as 
Linux’s popularity increases, more software developers will produce 
commercial software to install on Linux systems. For this to happen, a 



85321, Systems Administration Chapter 4: The File Hierarchy 

David Jones (20.01.00) Page 95 

location in which this can be installed must be provided and enforced 
within the file system standard. Currently, /opt is the likely option.   

Because of this, it is advisable to obtain and read the latest copy of the file 
system standard so as to be aware of the current issues. Other information 
sources are easily obtainable by searching the web.   

You should also be aware that while (in general), the UNIX file hierarchy 
looks similar from version to version, it contains differences based on 
requirements and the history of the development of the operating system 
implementation.   

Review Questions  

4.1 

You have just discovered that the previous system administrator of the system 
you now manage installed netscap in /sbin.  Is this an appropiate location?  
Why/Why not?.   

4.2 

Where are man pages kept? Explain the format of the man page directories. 
(Hint: I didn’t explain this anywhere in this chapter - you may have to do some 
looking)   

4.3 

As a system administrator, you are going to install the following programs, in 
each case, state the likely location of each package:   

� Java compiler and libraries   
� DOOM (a loud, violent but extremely entertaining game)   
� A network sniffer (for use by the sys admin only)   
� A new kernel source   
� A X Windows manager binary specially optimised for your new monitor   



85321, Systems Administration Chapter 5:  Processes and Files 

David Jones (20.01.00) Page 96 

Chapter 
Processes and Files 

Introduction  
This chapter introduces the important and related UNIX concepts of processes 
and files.  

A process is basically an executing program. All the work performed by a 
UNIX system is carried out by processes. The UNIX operating system stores a 
great deal of information about processes and provides a number of 
mechanisms by which you can manipulate both the files and the information 
about them.  

All the long term information stored on a UNIX system, like most computers 
today, is stored in files which are organised into a hierarchical directory 
structure. Each file on a UNIX system has a number of attributes that serve 
different purposes. As with processes there are a collection of commands 
which allow users and Systems Administrators to modify these attributes. 

Among the most important attributes of files and processes examined in this 
chapter are those associated with user identification and access control.  Since 
UNIX is a multi-user operating system it must provide mechanisms which 
restrict what and where users (and their processes) can go.  An understanding 
of how this is achieved is essential for a Systems Administrator. 

Other  Resources 
Other resources which discuss some of the concepts mentioned in this chapter 
include 

• Chapter 17 of this text 
This is the security chapter of the text and not surprisingly it includes a 
discussion of file permissions including some additional material which is 
not discussed here.  This chapter is actually a copy of the Security HOW-
TO from the LDP. 

• Online lecture 5 (which includes slides and audio)  
Included on the 85321 website/CD-ROM this lecture discusses many of the 
topics covered in this chapter.  You may find it useful to take a listen to this 
lecture as a supplement to the chapter. 

• Guides on the LDP 
The Linux Installation and Getting Started Guide has a number of sections 
looking at the permissions and job control 



85321, Systems Administration Chapter 5:  Processes and Files 

David Jones (20.01.00) Page 97 

Multiple users  
UNIX is a multi-user operating system. This means that at any one time there 
are multiple people all sharing the computer and its resources. The operating 
system must have some way of identifying the users and protecting one user’s 
resources from the other users.  

Identifying users  

Before you can use a UNIX computer you must first log in. The login process 
requires that you have a username and a password. By entering your username 
you identify yourself to the operating system.  

Users and groups  

In addition to a unique username UNIX also places every user into at least one 
group. Groups are used to provide or restrict access to a collection of users and 
are specified by the /etc/group  file.  

To find out what groups you are a member of use the groups command. It is 
possible to be a member of more than one group.  

The following example is taken from my Redhat 6.1 machine 

[david@faile links]$ groups  
david 

Executing the groups command as the "normal" user david shows that he is 
only a member of the david group.  Under Linux when you create a user with 
the adduser command the default action is to create a group with the same 
name as the account. 

In the following I user the su command to change to the root user (this requires 
that I enter root’s password).  Remember you should do the absolute minimum 
as root. 

[david@faile links]$ su -  
Password:  
[root@faile /root]# groups  
root bin daemon sys adm disk wheel 

From this you can see that the root user is a member of a number of groups. 

Names and numbers  

As you’ve seen each user and group has a unique name. However the operating 
system does not use these names internally. The names are used for the benefit 
of the human users.  

For its own purposes the operating system actually uses numbers to represent 
each user and group (numbers are more efficient to store). This is achieved by 
each username having an equivalent user identifier (UID) and every group 
name having an equivalent group identifier (GID).  

The association between username and UID is stored in the /etc/passwd file. 
The association between group name and GID is stored in the /etc/group file.  



85321, Systems Administration Chapter 5:  Processes and Files 

David Jones (20.01.00) Page 98 

To find out the your UID and initial GID try the following command 

grep username /etc/passwd 

Where username is your username. This command will display your entry in 
the /etc/passwd  file. The third field is your UID and the fourth is your initial 
GID. On my system my UID is 500 and my GID is 100.  

bash$  grep david /etc/passwd  
david:*:500:100:David Jones:/home/david:/bin/bash             

id   

The id  command can be used to discover username, UID, group name and 
GID of any user.  

dinbig:~$ id  
uid=500(david) gid=100(users) groups=100(users) 
dinbig:~$ id root  
uid=0(root) gid=0(root) groups=0(root),1(bin), 
2(daemon),3(sys),4(adm),6(disk),10(wheel),11(floppy)   

In the above you will see that the user root is a member of more than one 
group. The entry in the /etc/passwd  file stores the GID of the users initial 
group (mine is 100, root’s is 0). If a user belongs to any other groups they are 
specified in the /etc/group  file.  

Commands and processes  
Whenever you run a program, whether it is by typing in at the command line or 
running it from X-Windows, a process is created.  It is the process, a program 
in execution and a collection of executable code, data and operating system 
data structures, which perform the work of the program. 

The UNIX command line that you use to enter commands is actually another 
program/command called the shell. The shell is responsible for asking you for 
a command and then attempting to execute the command. (The shell also 
performs a number of other tasks which are discussed in the next chapter).  

Where are the commands?  

For you to execute a command, for example ls, that command must be in one 
of the directories in your search path. The search path is a list of directories 
maintained by the shell.  

When you ask the shell to execute a command it will look in each of the 
directories in your search path for a file with the same name as the command. 
When it finds the executable program it will run it. If it doesn’t find the 
executable program it will report command_name: not found .  

which   

Linux and most UNIX operating systems supply a command called which. The 
purpose of this command is to search through your search path for a particular 
command and tell you where it is.  



85321, Systems Administration Chapter 5:  Processes and Files 

David Jones (20.01.00) Page 99 

For example, the command which ls on my machine aldur returns 
/usr/bin/ls . This means that the program for ls is in the directory 
/usr/bin .  If you do which for ls on a Redhat Linux machine you will get a 
different location. 

Exercises 

5.1. Use the which command to find the locations of the following 
commands  
ls   
echo   
set   

Why can’t I run my shell script? 

When you get to chapter 8 of the textbook you will be introduced to shell 
scripts.  Shell scripts are small executable files that contain a bunch of 
commands, somewhat like batch files under MS-DOS (only better).  A 
common problem many people have when they create their first shell script is 
that it can’t be found. 

For example, let’s assume I’ve create a shell script called hello in the current 
directory.  The problem goes something like this. 

[david@faile links]$ pwd 
/home/david/teaching/85321/2000/textbook/mine/links 
[david@faile links]$ ls -l hello  
-rwxrwxr-x   1 david    david          34 Jan  8 17:15 hello 
[david@faile links]$ hello  
bash: hello: command not found 

To start with I find out what the current directory is, you will see why in the 
next couple of paragraphs.  I then use the ls command to confirm that the 
executable file hello is located in the current directory.  Then, at last, I’ve tried 
to execute it but get an error message.  As mentioned above "command not 
found" means that the shell was unable to locate the executable file in the 
current search path. 

If you think about it you should figure out that this means that the current 
directory is not in the search path.  That’s why the shell can’t find the command 
hello. 

There are two solutions to this problem 

Tell the shell exactly the location of the hello executable file. 
By just typing the name of the command I am telling the shell to search the 
path.  I can be a little more specific with the location using either relative or 
absolute paths. 

[david@faile links]$ 
/home/david/teaching/85321/2000/textbook/mine/links/hello 
hello david, how are you 
[david@faile links]$ ./hello 
hello david, how are you 

Include the current directory in the search path. 
The idea is to modify the search path so that the shell also looks in the current 



85321, Systems Administration Chapter 5:  Processes and Files 

David Jones (20.01.00) Page 100 

directory.  Absolute and relative paths play a part here also.  You will see an 
explanation of how to change the path in a later chapter. 

[david@faile links]$ PATH=$PATH:.  
[david@faile links]$ hello  
hello david, how are you 

When is a command not a command? 

In the previous exercise you will have discovered that which could not find the 
set  command. How can this be possible? If I enter the set command on my 
Linux box it works fine. So if all commands are executable files in the search 
path then why can’t which find it?  

This is because set is a built-in shell command. This means there isn’t an 
executable program that contains the code for the set command. Instead the 
code for set is actually built into the shell.  In other words no matter how hard 
you look you won’t find an executable file called set. 

So, as mentioned before any command you execute at a UNIX command line 
falls into one of two categories 

A shell command. 
This is a command which is understood by the shell you are using.  It isn’t an 
executable file. 

An executable file. 
The executable file will be located somewhere in your search path.  When you 
execute this type of command the shell will search for the file and then create a 
process which executes this file. 

Why shell commands are faster than other commands 

As mentioned above executing a shell command does not require the creation 
of a new process, the existing shell process executes the command.  For 
normal commands a new process must be created. 

 Creating a new process is, relatively speaking, quite a long process.  This is 
especially true when the executable file must be read from disk (you should 
remember from operating systems that reading from disk is very, very slow 
when compared to RAM and CPU operations). 

This is why internal shell commands are much faster than normal commands. 

For example, I have created two shell scripts (add and add2) which both 
perform the simple task of adding up to 1000 1 at a time.  add uses a normal 
command to perform the addition.  While add2 uses an internal shell command 
to perform the addition.  To compare the speed of the two scripts I use the 
UNIX time command to work out how long each script takes to execute 

[david@faile links]$ time add 
6.82user 7.15system 0:13.97elapsed 99%CPU (0avgtext+0avgdata 0maxresident)k 
0inputs+0outputs (107194major+70036minor)pagefaults 0swaps 
[david@faile links]$ time add2 
0.52user 0.00system 0:00.51elapsed 100%CPU (0avgtext+0avgdata 0maxresident)k 
0inputs+0outputs (194major+24minor)pagefaults 0swaps 



85321, Systems Administration Chapter 5:  Processes and Files 

David Jones (20.01.00) Page 101 

From the output of these two commands you should be able to see that using 
the internal shell command is significantly faster than using the normal UNIX 
command.  The drawback of shell commands is that they can only be used 
with a specific shell, you might not be using the right shell.  On the other hand, 
the common UNIX  commands are present on all UNIX systems. 

Controlling processes 
Processes are the main active component of any modern operating system.  
Any work performed by a modern operating system is performed by processes.  
UNIX/Linux is no different.  This section provides an overview of how you 
can view and manipulate processes as a normal user.  This is a primary 
responsibility for a Systems Administrator so it is important foundation 
knowledge. 

In this section you will learn how to 

• view existing processes 
Discover how to find out which processes exist, what is their current state 
and who they belong to. 

• Job control 
How you can control the execution of processes using the features of 
common shells. 

• Process manipulation 
How processes can be stopped or restarted by sending signals. 

Online lecture 5 also takes a look at this material. 

Viewing existing processes 

As mentioned earlier in this chapter every UNIX command you execute runs 
as a new process.  Since Linux/UNIX is a multi-tasking operating system at 
any one time there can be tens, hundreds even thousands of processes running 
(the limit is set by a value in the source code for the Linux kernel).   

As a Systems Administrator and a normal user you will want to be able to find 
out which processes are currently running, what there current state is and a 
bunch of other process related information.  This section introduces you to a 
number of  commands which allow you to do this including 

• ps 
Provides a snapshot of the processes which are currently running. 

• top  
Provides a full screen, updated view of the current processes. 

• pstree 
Displays a tree-like structure of the current processes. 

• Various graphical tools 
It is now common for a range of GUI tools to be available.  This section 
will look briefly at those which come with the GNOME desktop 
environment. 



85321, Systems Administration Chapter 5:  Processes and Files 

David Jones (20.01.00) Page 102 

ps 

Any use on a UNIX system can execute the ps command and see something 
like  

[david@faile linux]$ ps  
  PID TTY          TIME CMD 
  667 pts/0    00:00:00 bash 
  893 pts/0    00:00:00 ps 

This is simply the list of all processes running from the current terminal (TTY 
which is currently pts/0).  The ps command understands a wide range of 
command-line switches which will modify both the  

• rows, and 
By modifiying the rows which appear you are changing which processes 
are shown.  By default you are only seeing the processes for the current 
terminal.  The example below shows how this can be changed. 

• columns 
The columns display various bits of information about the processes.  By 
default you see such things as the commands used the process is running 
(the CMD column) and the unique process identifier for the process (the 
PID column).   

For example, 
[david@faile linux]$ ps a 
  PID TTY      STAT   TIME COMMAND 
  667 pts/0    S      0:00 bash 
  902 pts/0    R      0:00 ps a 
[david@faile linux]$ ps x 
  PID TTY      STAT   TIME COMMAND 
  592 tty1     SW     0:00 [bash] 
  603 tty1     SW     0:00 [startx] 
  610 tty1     SW     0:00 [xinit] 
  615 tty1     S      0:00 /usr/bin/gnome-session 
 
           ..... some output deleted here... 
 
  667 pts/0    S      0:00 bash 
  669 tty1     SW     0:00 [gnome-pty-helpe] 
  670 pts/1    SW     0:00 [bash] 
  671 tty1     SW     0:00 [gnome-pty-helpe] 
  672 pts/2    SW     0:00 [bash] 
  675 tty1     SW     0:00 [gnome-pty-helpe] 
  676 tty1     SW     0:00 [gnome-pty-helpe] 
  677 tty1     SW     0:00 [gnome-pty-helpe] 
  678 pts/3    S      0:00 bash 
  679 pts/4    S      0:00 bash 
  680 pts/5    SW     0:00 [bash]  
  688 tty1     S      1:42 /home/david/Office51/bin/soffice.bin 
  707 tty1     S      0:41 /usr/lib/netscape/netscape-communicator -irix-
session   
  720 tty1     S      0:00 (dns helper) 
  721 tty1     S      0:00 /home/david/Office51/bin/soffice.bin 
  722 tty1     S      0:00 /home/david/Office51/bin/soffice.bin 
  723 tty1     S      0:00 /home/david/Office51/bin/soffice.bin 
  724 tty1     S      0:00 /home/david/Office51/bin/soffice.bin 
  725 tty1     S      0:00 /home/david/Office51/bin/soffice.bin 
  727 tty1     S      0:00 /home/david/Office51/bin/soffice.bin 
  795 pts/3    S      0:00 vi TODO 
  835 tty1     S      0:26 gtop 
  924 pts/0    R      0:00 ps x 



85321, Systems Administration Chapter 5:  Processes and Files 

David Jones (20.01.00) Page 103 

Refer to the manual page for the ps command for more information about the 
available switches.  You will notice that ps does not follow the standard UNIX 
command format.  In this case the command-line switches a and x were not 
preceded with -.   

5.2. Use the ps command to discover which user owns the  
   /usr/sbin/atd  
   sendmail  
processes.  

top 

ps provides a one-off snapshot of the current processes.  If you want an on-
going view of the processes you need to use top.  top produces output 
something like 

 10:56am  up  1:21,  7 users,  load average: 1.32, 0.80, 0.41 
95 processes: 92 sleeping, 2 running, 1 zombie, 0 stopped 
CPU states: 15.0% user,  3.6% system,  0.0% nice, 81.3% idle 
Mem:  127948K av, 124496K used,   3452K free,  58884K shrd,   2888K buff 
Swap:  72252K av,  21956K used,  50296K free                 34528K cached 
 
  PID USER     PRI  NI  SIZE  RSS SHARE STAT  LIB %CPU %MEM   TIME COMMAND 
  974 david     12   0   428  428   348 R       0 79.0  0.3   4:00 yes 
  977 david      7   0  1044 1044   816 R       0 10.6  0.8   0:00 top 
  835 david      1   0  3912 3912  2876 S       0  9.7  3.0   1:55 gtop 
  611 root       0   0 34468  32M  1620 S       0  0.8 25.8   3:00 X 
    1 root       0   0   124   72    52 S       0  0.0  0.0   0:04 init 
    2 root       0   0     0    0     0 SW      0  0.0  0.0   0:00 kflushd 
    3 root       0   0     0    0     0 SW      0  0.0  0.0   0:00 kupdate 
    4 root       0   0     0    0     0 SW      0  0.0  0.0   0:00 kpiod 
    5 root       0   0     0    0     0 SW      0  0.0  0.0   0:00 kswapd 
    6 root     -20 -20     0    0     0 SW<     0  0.0  0.0   0:00 
mdrecoveryd 
  253 bin        0   0    80    0     0 SW      0  0.0  0.0   0:00 portmap 
  269 root       0   0   380  368   324 S       0  0.0  0.2   0:00 apmd 
  322 root       0   0   200  148   104 S       0  0.0  0.1   0:00 syslogd 
  333 root       0   0   504  160   112 S       0  0.0  0.1   0:00 klogd 
  349 daemon     0   0   144  104    76 S       0  0.0  0.0   0:00 atd 
  365 root       0   0   240  188   144 S       0  0.0  0.1   0:00 crond 
  380 root       0   0   140    0     0 SW      0  0.0  0.0   0:00 cardmgr 

As with ps there are a number of command-line switches which modify the 
operation of top.  Additionally top has a number of interactive commands you 
can use while it is running.  For example, hitting the h key while top is running 
will display a simple help screen which lists the interactive commands. 

pstree  and ps f  

Each new process (the child process) must be started by another process (the 
parent process).  As a result UNIX processes form a family tree.  The pstree 
and the f switch of the ps command allow you to view this family tree.  For 
example 

[david@faile david]$ pstree   
init-+-apmd 
     |-atd 
     |-cardmgr 
     |-crond 
     |-enlightenment 
     |-gen_util_applet 



85321, Systems Administration Chapter 5:  Processes and Files 

David Jones (20.01.00) Page 104 

     |-gmc 
     |-gnome-name-serv 
     |-gnome-smproxy 
     |-gnome-terminal-+-bash---pstree 
     |                ‘-gnome-pty-helpe 
     |-3*[gnome-terminal-+-bash] 
     |                   ‘-gnome-pty-helpe] 
     |-gnome-terminal-+-bash-+-top 
     |                |      ‘-yes 
     |                ‘-gnome-pty-helpe 
     |-gnome-terminal-+-bash---su---bash 
     |                ‘-gnome-pty-helpe 
     |-gnomepager_appl 
     |-gpm 
     |-gtop 
     |-httpd---15*[httpd] 
     |-inetd 
     |-kflushd 
     |-klogd 
     |-kpiod 
     |-kswapd 
     |-kupdate 
     |-login---bash---startx---xinit-+-X 
     |                               ‘-gnome-session 
     |-lpd 
     |-magicdev 
     |-mdrecoveryd 
     |-5*[mingetty] 
     |-msql2d 
     |-netscape-commun---2*[netscape-commun] 
     |-panel 
     |-portmap 
     |-safe_mysqld---mysqld---mysqld---mysqld 
     |-soffice.bin---soffice.bin---5*[soffice.bin] 
     |-syslogd 
     |-xfs 
     ‘-xscreensaver 

gtop 

The increasing use of X Windows and GUI environments means that there 
have been a number of GUI tools written to provide similar features as the 
text-based tools introduced in the previous couple of sections.  One of them is 
gtop, the GNU system monitor program, which by default provides a display 
not unlike top (but as GUI).  Gtop also provides a number of additional 
services including displays of memory and file system usage.  Diagram 5.1 is a 
screen shot of the memory usage screen. 

 



85321, Systems Administration Chapter 5:  Processes and Files 

David Jones (20.01.00) Page 105 

D i a g r a m  1 . 1  
S c r e e n  s h o t  o f  g t o p  

Job control  

Jobs and processes are the same thing in UNIX terminology.  Job control is a 
facility provided by most shells which allow you to switch between multiple 
running processes. 

So far most of you will have been running only a single job.  Not unlike what 
was done in the previous examples when running the ps command.  The 
normal process goes something like this 

• You type a command at the shell prompt 

• The shell runs that command while you wait for it complete. 

• When it is finished the shell displays another command-line and you can 
start again. 

During this process the shell goes "to sleep" waiting for the command to finish.  
You can see this in the ps a example from above.  In this example bash is the 
shell and ps is the command which is being executed.  Take a look at the 
STAT column for bash, it is S.  STAT or status indicates the current status for 
a process.  NewTable 5.1 summarises the possible states for a Linux process.  
This table is adapted from the manual page for the ps command. 



85321, Systems Administration Chapter 5:  Processes and Files 

David Jones (20.01.00) Page 106 

 

Process State codes 

D uninterruptible sleep (usually IO) 

R runnable (on run queue) 

S Sleeping 

T traced or stopped 

Z a defunct ("zombie") process 

N e w T a b l e  5 . 1  
L i n u x  P r o c e s s  S t a t e s  

As you should remember from operating systems on a single CPU system there 
can only ever be one running process.  In the ps a example from above the 
running process is the one executing the ps command. 

This running process is called the foreground process (job).  It is the process 
which "owns" the terminal for input and output.  Usually there is only one 
running process.  However most shells provide mechanisms by which you can  

• interrupt a process 
Interrupting a process is the same as killing it.  The process dies i.e. is no 
longer running.  The typical method for interrupting the current foreground 
process is using the CTRL-C key combination (hold the control key down 
and hit the c key). 
For example, run the yes command which continues to display a line of y’s 
one to a line. The yes command will quite happily do this forever.  To stop 
it hit CTRL-C.  You have just interrupted a process. 

• suspend a process 
Suspending a process puts it to sleep until you start it again.  You use the 
key combination CTRL-Z to suspend a process.  Run the yes command 
again.  This time suspend it rather than interrupt it.  You should see 
something like  

y 
y 
 
[1]+  Stopped                 yes 

The [1] is the job number for the suspended process.  You can use this to 
restart the process.  If you now run the ps a command you will see something 
like 

[david@faile 2000]$ ps a  
  PID TTY      STAT   TIME COMMAND 
  678 pts/3    S      0:00 bash 
  962 pts/3    T      0:00 yes 
  963 pts/3    R      0:00 ps a 

Notice that the yes process appears, so it still exists.  If you refer back to the 
previous table you can see that its state is now stopped. 

• check on the status of jobs 
The jobs command is used to check on the status of the jobs you currently 



85321, Systems Administration Chapter 5:  Processes and Files 

David Jones (20.01.00) Page 107 

have associated with the terminal.  In our current situation you get 
something like 

[david@faile 2000]$ jobs  
[1]+  Stopped                 yes 

• change the current foreground process 
To put the yes command back into the foreground (to take it out of the 
background) you can use the fg command.  fg %1 will put the yes 
command back into the foreground and start the y’s scrolling down the 
screen again.  The %1 is used to indicate which job you want back into the 
foreground.  The 1 matches the [1] displayed when we stopped the job 
above.  Feel free to interrupt the job at any stage. 

• run other processes in the background 
The shells also support the idea of starting a process off in the background.  
This means that the command you execute goes straight into the 
background rather than staying in the foreground.  This is achieved using 
the & symbol.  For example 

[david@faile 2000]$ yes > /dev/null &  
[1] 974 
[david@faile 2000]$ jobs  
[1]+  Running                 yes >/dev/null & 
[david@faile 2000]$ ps a  
  PID TTY      STAT   TIME COMMAND 
  678 pts/3    S      0:00 bash 
  974 pts/3    R      0:35 yes 
  976 pts/3    R      0:00 ps a 

The [1] 974 indicates that the yes command has become job number 1 with 
process id 974.  This is reinforced by using the jobs and ps a commands to 
view the current jobs and processes.  Notice that we now have two processes 
which are on the runnable queue, ps and yes. 

Manipulating processes 

You have already seen some simple approaches to manipulating processes 
using the CTRL-C and CTRL-Z key combinations.  These approaches along 
with all approaches to manipulating processes are related to sending signals to 
processes.  When a process is executed it automatically has a collection of 
signal handlers create.  Each signal handler is essentially a function which is 
executed when a certain signal is received. 

If you are interested in finding out more about signals you can refer to online 
lecture 5 or to the manual page signal(7).  This manual page describes all 30 
signals used by Linux and also the default actions which are expected as a 
result of receiving a particular signal. 

The kill  command 

Apart from using certain key combinations you can also send signals to 
processes using the kill command.  The kill command is used to send a specific 
signal to a specific process.  This means you usually have to specify both the 
signal and the process. 



85321, Systems Administration Chapter 5:  Processes and Files 

David Jones (20.01.00) Page 108 

By default the kill command sends the TERM signal.  You can specify other 
signals by using the appropriate number of title.  The -l switch of the kill 
command provides a quick overview of the available signals, their names and 
numbers. 

[david@faile david]$ kill -l  
 1) SIGHUP  2) SIGINT  3) SIGQUIT  4) SIGILL 
 5) SIGTRAP  6) SIGIOT  7) SIGBUS  8) SIGFPE 
 9) SIGKILL 10) SIGUSR1 11) SIGSEGV 12) SIGUSR2 
13) SIGPIPE 14) SIGALRM 15) SIGTERM 17) SIGCHLD 
18) SIGCONT 19) SIGSTOP 20) SIGTSTP 21) SIGTTIN 
22) SIGTTOU 23) SIGURG 24) SIGXCPU 25) SIGXFSZ 
26) SIGVTALRM 27) SIGPROF 28) SIGWINCH 29) SIGIO 
30) SIGPWR  

You specify the process to which you want to send a signal using the process 
identifier as shown by the ps or top commands.  The following commands 
demonstrate how job control, the ps command and the kill command can be 
combined. 

[david@faile 2000]$ yes > /dev/null &  
[2] 1187 
[1]   Killed                  yes >/dev/null 
[david@faile 2000]$ yes > /dev/null &  
[3] 1188 
[david@faile 2000]$ yes > /dev/null &  
[4] 1189 
[david@faile 2000]$ ps a  
  PID TTY      STAT   TIME COMMAND 
  678 pts/3    S      0:00 bash 
 1187 pts/3    R      0:13 yes 
 1188 pts/3    R      0:11 yes 
 1189 pts/3    R      0:11 yes 
 1190 pts/3    R      0:00 ps a 

To start with we create three versions of the yes command all running in the 
background.  We know start sending some signals to the processes using the 
kill command. 

In the first kill command I don’t specify a signal.  This means the kill 
command will use the default TERM signal.  The names of signals are shown 
in the kill -l output from above.  However, you won’t see a name TERM, you 
will see the name SIGTERM.  When used in the kill command and in some 
discussions the SIG is dropped.  So the KILL signal is called SIGKILL above. 

[david@faile 2000]$ kill 1187  
[david@faile 2000]$ ps a  
  PID TTY      STAT   TIME COMMAND 
  678 pts/3    S      0:00 bash 
 1188 pts/3    R      0:40 yes 
 1189 pts/3    R      0:39 yes 
 1193 pts/3    R      0:00 ps a 
[2]   Terminated              yes >/dev/null 

From the message and the output of the ps command you can see that process 
1187 has been destroyed. 

[david@faile 2000]$ kill -STOP 1188  
 
[3]+  Stopped (signal)        yes >/dev/null 
[david@faile 2000]$ kill -19 1189  



85321, Systems Administration Chapter 5:  Processes and Files 

David Jones (20.01.00) Page 109 

[david@faile 2000]$  
 
[4]+  Stopped (signal)        yes >/dev/null 
[david@faile 2000]$ ps a  
  PID TTY      STAT   TIME COMMAND 
  678 pts/3    S      0:00 bash 
 1188 pts/3    T      0:53 yes 
 1189 pts/3    T      1:11 yes 
 1195 pts/3    R      0:00 ps a 

In the previous commands the two processes 1188 and 1189 have been 
suspended using the kill command instead of using the CTRL-Z key 
combination.  This demonstrates that when you use the CTRL-Z key 
combination you are actually sending the process the SIGSTOP (signal number 
19) signal. 

[david@faile 2000]$ kill -5 1188  
[david@faile 2000]$ ps a  
  PID TTY      STAT   TIME COMMAND 
  678 pts/3    S      0:00 bash 
 1188 pts/3    T      0:53 yes 
 1189 pts/3    T      1:11 yes 
 1200 pts/3    R      0:00 ps a 

From these commands it appears that sending signal 5 (SIGTRAP) has no 
effect on process 1188. 

Exercises 

5.3. Under the VMS operating system it is common to use the key 
combination CTRL-Z to kill a program. A new user on your UNIX 
system has been using VMS a lot. What happens when he uses CTRL-Z 
while editing a document with vi?  

Process attr ibutes  
For every process that is created the UNIX operating system stores information 
including  

• its real UID, GID and its effective UID and GID  
These are used to identify the owner of the process (real UID and GID) and 
determine what the process is allowed to do (effective UID and GID) 

• the code and variables used by the process (its address map)  

• the status of the process  

• its priority  

• its parent process  

Parent processes  

All processes are created by another process (its parent). The creation of a 
child process is usually a combination of two operations  



85321, Systems Administration Chapter 5:  Processes and Files 

David Jones (20.01.00) Page 110 

• forking 
A new process is created that is almost identical to the parent process. It 
will be using the same code.  

• exec 
This changes the code being used by the process to that of another 
program.  

When you enter a command it is the shell that performs these tasks. It will fork 
off a new process (which is running the shell’s program). The child process 
then performs an exec to change to the code for the command you wish 
executed.  

Examples of this are shown in the pstree section earlier in this chapter. 

Process UID and GID  

In order for the operating system to know what a process is allowed to do it 
must store information about who owns the process (UID and GID). The 
UNIX operating system stores two types of UID and two types of GID.  

Real UID and GID  

A process’ real UID and GID will be the same as the UID and GID of the user 
who ran the process. Therefore any process you execute will have your UID 
and GID.  

The real UID and GID are used for accounting purposes.  

Effective UID and GID  

The effective UID and GID are used to determine what operations a process 
can perform. In most cases the effective UID and GID will be the same as the 
real UID and GID.  

However using special file permissions it is possible to change the effective 
UID and GID. How and why you would want to do this is examined later in 
this chapter.  The following exercise asks you to create an executable program 
we will use to display the real and effective UID and GID. 



85321, Systems Administration Chapter 5:  Processes and Files 

David Jones (20.01.00) Page 111 

Exercises 

5.4. Create a text file called i_am.c that contains the following C program. 
Compile the program by using the following command 
cc i_am.cc -o i_am  
This will produce an executable program called i_am.  
Run the program. (rather than type the code, you should be able to cut 
and paste it from the online versions of this chapter that are on the 
CD-ROM and Web site)   
#include <stdio.h> 
#include <unistd.h>  void main() 
{ 
 int real_uid, effective_uid; 
 int real_gid, effective_gid;   /* get the user id and 
group id*/ 
 real_uid = getuid(); 
 effective_uid = geteuid(); 
 real_gid = getgid(); 
 effective_gid = getegid();   /* display what I found */ 
 printf( "The real uid is %d\n", real_uid ); 
 printf("The effective uid is %d\n", effective_uid ); 
 printf("The real gid is %d\n", real_gid ); 
 printf("The effective gid is %d\n", effective_gid ); 
}                     

5.5. Make sure you are logged in as a normal user when you start the 
following exercise.  In a previous exercise you were asked to discover 
which user owns the /usr/sbin/atd and sendmail  processes.  Try to cause 
these programs to stop using the kill command.  If it doesn’t work, why 
not? There are two reasons which may explain this problem.  What are 
they? 

5.6. Use the ps command to discover which user is the "owner" of the atd 
and sendmail processes 

Files  
All the information stored by UNIX onto disk is stored in files. Under UNIX 
even directories are just special types of files. A previous reading has already 
introduced you to the basic UNIX directory hierarchy. The purpose of this 
section is to fill in some of the detail including discussion of  

• file types 
UNIX recognises a number of special file types which are used for specific 
purposes (e.g. a directory is a special file type). 

• Normal files 
Normal files, those used to store data, can also have a number of types 
which describe the type of data stored in the file (e.g. a GIF file, a Word 
document) 

• file attributes 
The file type is just one of the attributes UNIX stores about files.  There are 
many others including owner and size. 



85321, Systems Administration Chapter 5:  Processes and Files 

David Jones (20.01.00) Page 112 

File types  

UNIX supports a small number of different file types. The following table 
summarises these different file types. What the different file types are and 
what their purpose is will be explained as we progress. File types are signified 
by a single character which is used in the output of the ls command (you use 
the ls command to view the various attributes of a file)..  

 

File type Meaning 

- a normal file  

d a directory  

l symbolic link  

b block device file  

c character device file  

p a fifo or named pipe  

T a b l e  5 . 1   
U N I X  f i l e  t y p e s   

For current purposes you can think of these file types as falling into three 
categories 

• normal ”files, 
Normal files are used to store data and under UNIX they are just a 
collection of bytes of information.  The format of these bytes can be used 
to identify a normal file as a GIF file or a Word document. 

• directories or directory files, 
Remember, for UNIX a directory is just another file which happens to 
contain the names of files and their I-node.  An I-node is an operating 
system data structure which is used to store information about the file 
(explained later). 

• special or device files. 
Explained in more detail later on in the text these special files provide 
access to devices which are connected to the computer.  Why these exist 
and what they are used for will be explained. 

Types of normal files 

Those of you who use Windows will be familiar with normal files having 
different types (e.g. GIF images, Word documents etc).  Under Windows the 
type of a normal file is specified by its extension.  UNIX does not use this 
approach.  In fact the operating system makes no distinction between different 
types of files.  All files are simply a collection of bytes. 

However, UNIX does provide commands which allow you to determine the 
type of normal files.  If you'’re unsure what type of normal file you have the 
UNIX file command might help. 



85321, Systems Administration Chapter 5:  Processes and Files 

David Jones (20.01.00) Page 113 

[david@faile david]$ file article.doc reopen.call gtop.gif pair.pdf 
/etc/passwd 
article.doc:          Microsoft Office Document 
reopen.call:          Microsoft Office Document 
gtop.gif:             GIF image data, version 89a, 618 x 428, 
pair.pdf:             PDF document, version 1.2 
/etc/passwd:          ASCII text 

In this example the file command has been used to discover what type of file 
for a number of files.  Some important things to notice 

• extension doesn’t matter 
The file reopen.call is a Word document but its extension is not .doc. 

• Additional features 
For some file types the file command provides additional features such as 
the height and width of the GIF image and the version of PDF used in the 
PDF file. 

How does the file command work?   

The file command attempts to perform three tests on a file to determine its 
type.  The first test which works is used.  The three tests are 

file system tests 
This works if the file to be tested is one of the special files listed in the 
previous section (e.g. a directory, device file etc).  For example 

[david@faile 2000]$ file /home /dev/hda  
/home:    directory 
/dev/hda: block special (3/0) 

magic number tests 
Many data file formats always contain a specific value at a specific location in 
the file.  These value is referred to as a magic number.  UNIX systems 
maintain a data file (/usr/share/magic on Linux) which contains a collection of 
magic numbers for various file types (take a look at the file on your Linux 
computer). 

language tests 
Finally if the file is a text file it attempts to determine what type of computer 
language the file contains. 

Exercises 

5.7. Examine the contents of the /usr/share/magic file.  Experiment 
with the file command on a number of different files. 

File attributes  

The UNIX/Linux operating system uses a data structure called an inode to 
store all of the information it stores about a file (except for the filename). 
Every file on a UNIX system must have an associated inode on the disk.  If 
you run out of inodes you can’t create any more files on that disk. 

You can find out which inode a file has by using the ls -i command. 

dinbig:~$ ls -i README  
  45210 README     



85321, Systems Administration Chapter 5:  Processes and Files 

David Jones (20.01.00) Page 114 

In the above example the file README is using inode 45210.  

Some fo the information UNIX stores about each file includes 

• where the file’s data is stored on the disk  
This is the collection of disk blocks which are used to store the data for the 
file.   

• what the file’s name is  
The name of a file is actually stored in the directory in which it occurs.  
Each entry in a directory contains a filename and an associated inode 
number. 

• who owns the file  
The inode contains the UID and GID of the user who owns the file. 

• who is allowed to do what with the file  
This is stored in the file permissions of a file.  We examine file permissions 
in more detail below. 

• how big the file is 

• when was the file last modified  

• how many links there are to the file  
It is possible for the same file to be known by more than one name.  
Remember the filename is stored in a directory.  It is possible to have many 
different directories contain pointers to the one inode. 

Throughout this text you will find the term file used to mean both files and 
directories.  

Viewing file attributes  

To examine the various attributes associated with a file you can use the -l 
switch of the ls command.  This section provides some additional information 
about the file attributes. 

F i g u r e  5 . 1  
F i l e  A t t r i b u t e s  

Filenames  

Most UNIX file systems (including the Linux file system) will allow filenames 
to be 255 characters long and use almost any characters. However there are 



85321, Systems Administration Chapter 5:  Processes and Files 

David Jones (20.01.00) Page 115 

some characters that can cause problems if used including * $ ? ’ " / \ -  
and others (including the space character). Why is explained in the next 
chapter.  This doesn’t mean you can’t create filenames that contain these 
characters, just that you can have some problems if you do. 

Size  

The size of a file is specified in bytes. So the above file is 227 bytes long. The 
standard Linux file system, called EXT2, will allow files to be up to 2Gb (giga 
bytes) in size. Which these days is not that large.  Development is currently on-
going for EXT3 which will increase this file size. 

Owner and Group Owner  

Even though the ls command displays the names of the user and group owner 
of a file that is not what is stored on the inode.  The main reason being is that it 
would consume too much space to store the names.  Instead the inode contains 
the UID and GID of the user and group owner.  The ls command performs a 
translation from UID/GID to the name when it executes. 

Date  

The date specified here is the date the file was last modified.  

Permissions 

The permission attributes of a file specifies what operations can be done with a 
file and who can perform those operations.  Permissions are explained in more 
detail in the following section. 

Exercises 

5.8. Examine the following command and it’s output (executing these 
commands on your system should provide very similar results). 
  [david@faile 3]$ ls -ld / /dev  
  drwxr-xr-x 19 root root 1024 Dec 6 11:30 / 
  drwxr-xr-x 2 root root 22528 Dec 8 10:12 /dev 
 
Answer the following questions  
  1. What type of files are / and /dev?  
  2. What else can you tell about these files?  
  3. How come /dev is bigger than /?  



85321, Systems Administration Chapter 5:  Processes and Files 

David Jones (20.01.00) Page 116 

5.9. Execute the following commands  
  mkdir tmp 
  ls -ld tmp 
  touch tmp/tempfiledj 
  ls -ld tmp  
 
These commands create a new directory called tmp and create an empty 
file tempfiledj  inside that directory. The touch command is used to 
create an empty file if the file doesn’t exist, or updates the date last 
modified if it does.  
 
Why does the output of the ls -ld tmp  command change?  

File protection  
Given that there can be many people sharing a UNIX computer it is important 
that the operating system provide some method of restricting access to files. I 
don’t want you to be able to look at my personal files.  

UNIX achieves this by  

• restricting users to three valid operations, 
Under UNIX there are only three things you can do to a file (or directory): 
read, write or execute it. 

• allow the file owner to specify who can do these operations on a file. 
The file owner can use the user and group concepts of UNIX to restrict 
which users (actually it restricts which processes that are owned by 
particular users) can perform these tasks. 

File operations  

UNIX provides three basic operations that can be performed on a file or a 
directory. The following table summarises those operations.  

It is important to recognise that the operations are slightly different depending 
whether they are being applied to a file or a directory.  

Operation Effect on a file Effect on a directory 

read read the contents of the file  find out what files are in the 
directory, e.g. ls  

write delete the file or add 
something to the file  

be able to create or remove a 
file from the directory  

execute be able to run a file/program  be able to access a file 
within a directory  

T a b l e  5 . 2  
U N I X  f i l e  o p e r a t i o n s   

Users, groups and others  

Processes wishing to access a file on a UNIX computer are placed into one of 
three categories  



85321, Systems Administration Chapter 5:  Processes and Files 

David Jones (20.01.00) Page 117 

• user 
The individual user who owns the file (by default the user that created the 
file but this can be changed). In figure 5.1 the owner is the user david.  

• group 
The collection of people that belong to the group that owns the file (by 
default the group to which the file’s creator belongs). In figure 5.1 the 
group is staff .  

• other 
Anybody that doesn’t fall into the first two categories.  

 

F i g u r e  5 . 2  

F i l e  P e r m i s s i o n s  

File permissons  

Each user category (user, group and other) have their own set of file 
permissions. These control what file operation each particular user category 
can perform.  

File permissions are the first field of file attributes to appear in the output of ls 

-l . File permissions actually consist of four fields  

• file type,  

• user permissions,  

• group permissions,  

• and other permissions.  

Three sets of file permissions  

As Figure 5.2 shows the file permissions for a file are divided into three 
different sets one for the user, one for a group which owns the file and one for 
everyone else. 

A letter indicates that the particular category of user has permission to perform 
that operation on the file. A - indicates that they can’t.  

In the above diagram the owner can read, write and execute the file (rwx ). The 
group can read and write the file (rw- ), while other cannot do anything with 
the file (--- ).  



85321, Systems Administration Chapter 5:  Processes and Files 

David Jones (20.01.00) Page 118 

Symbolic and numeric permissions  

rwxr-x-w-  is referred to as symbolic permissions. The permissions are 
represented using a variety of symbols.  

There is another method for representing file permissions called numeric or 
absolute permissions where the file permissions are represented using 
numbers. The relationship between symbolic and numeric permissions is 
discussed in a couple of pages. 

Symbols  

The following table summarises the symbols that can be used in representing 
file permissions using the symbolic method.  

Symbol Purpose 

r read  

w write  

x execute  

s setuid or setgid (depending on location)  

t sticky bit  

T a b l e  5 . 3  
S y m b o l i c  f i l e  p e r m i s s i o n s   

Special permissions  

Table 5.3 introduced three new types of permission setuid, setgid and the 
sticky bit.  

Sticky bit on a file  

In the past having the sticky bit set on a file meant that when the file was 
executed the code for the program would "stick" in RAM. Normally once a 
program has finished its code was taken out of RAM and that area used for 
something else.  

The sticky bit was used on programs that were executed regularly. If the code 
for a program is already in RAM the program will start much quicker because 
the code doesn’t have to be loaded from disk.  

However today with the advent of shared libraries and cheap RAM most 
modern Unices ignore the sticky bit when it is set on a file.  

Sticky bit on a directory  

The /tmp  directory on UNIX is used by a number of programs to store 
temporary files regardless of the user. For example when you use elm (a UNIX 
mail program) to send a mail message, while you are editing the message it 
will be stored as a file in the /tmp directory.  



85321, Systems Administration Chapter 5:  Processes and Files 

David Jones (20.01.00) Page 119 

Modern UNIX operating systems (including Linux) use the sticky bit on a 
directory to make /tmp directories more secure. Try the command ls -ld 

/tmp  what do you notice about the file permissions of /tmp.  

If the sticky bit is set on a directory you can only delete or rename a file in that 
directory if you are  

• the owner of the directory,  

• the owner of the file, or  

• the super user  

Effective UID and GID  
In this section we revisit the discussion of the relationship between the process 
attributes of real UID/GID and effective UID/GID. 

When you use the passwd command to change your password the command 
will actually change the contents of either the /etc/passwd or /etc/shadow  
files. These are the files where your password is stored. By default most Linux 
systems use /etc/passwd   
As has been mentioned previously the UNIX operating system uses the 
effective UID and GID of a process to decide whether or not that process can 
modify a file. Also the effective UID and GID are normally the UID and GID 
of the user who executes the process.  

This means that if I use the passwd command to modify the contents of the 
/etc/passwd  file (I write to the file) then I must have write permission on the 
/etc/passwd  file. Let’s find out.  

What are the file permissions on the /etc/passwd file?  

dinbig:~$ ls -l /etc/passwd  
-rw-r--r--   1 root     root          697 Feb  1 21:21 /etc/passwd    

On the basis of these permissions should I be able to write to the /etc/passwd 
file?  

No. Only the user who owns the file, root, has write permission. Then how do 
does the passwd command change my password?  

setuid and setgid  

This is where the setuid and setgid file permissions enter the picture. Let’s have 
a look at the permissions for the passwd command (first we find out where it 
is).  

dinbig:~$ which passwd  
/usr/bin/passwd 
dinbig:~$ ls -l /usr/bin/passwd  
-rws--x--x   1 root     bin          7192 Oct 16 06:10 
/usr/bin/passwd 
  

Notice the s symbol in the file permissions of the passwd command, this 
specifies that this command is setuid.  



85321, Systems Administration Chapter 5:  Processes and Files 

David Jones (20.01.00) Page 120 

The setuid and setgid permissions are used to change the effective UID and 
GID of a process. When I execute the passwd command a new process is 
created. The real UID and GID of this process will match my UID and GID. 
However the effective UID and GID (the values used to check file 
permissions) will be set to that of the command.  

In the case of the passwd command the effective UID will be that of root 
because the setuid permission is set, while the effective GID will be my 
group’s because the setgid bit is not set.  

Exercises 

5.10. Log in as the root user, go to the directory that contains the file i_am 
you created in exercise 5.3. Execute the following commands 
  cp i_am i_am_root 
  cp i_am i_am_root_group 
  chown root.root i_am_root* 
  chmod a+rx i_am* 
  chmod u+s i_am_root 
  chmod +s i_am_root_group 
  ls -l i_am*        
These commands make copies of the i_am program called  
i_am_root  with setuid set, and i_am_root_group  with setuid and 
setgid set. Log back in as your normal user and execute all three of the 
i_am  programs. What do you notice? What is the UID and gid of root?  

Numer ic permissions  
Up until now we have been using symbols like r w x s t to represent file 
permissions. However the operating system itself doesn’t use symbols, instead 
it uses numbers. When you use symbolic permissions, the commands translate 
between the symbolic permission and the numeric permission.  

With numeric or absolute permissions the file permissions are represented 
using octal (base 8) numbers rather than symbols. The following table 
summarises the relationship between the symbols used in symbolic 
permissions and the numbers used in numeric permissions.  

To obtain the numeric permissions for a file you add the numbers for all the 
permissions that are allowed together.  

 

Symbol Number 

s  4000 setuid 2000 setgid  

t   1000  

r   400 user 40 group 4 other  

w  200 user 20 group 2 other  

x   100 user 10 group 1 other  

T a b l e  5 . 4  
N u m e r i c  f i l e  p e r m i s s i o n s   



85321, Systems Administration Chapter 5:  Processes and Files 

David Jones (20.01.00) Page 121 

Symbolic to numeric  

Here’s an example of converting from symbolic to numeric using a different 
method. This method relies on using binary numbers to calculate the numeric 
permissions.  

The process goes something like this  

• write down the symbolic permissions,  

• under each permission that is on, write a one  

• under each permission that is off, write a zero  

• for each category of user, user, group and other convert the three binary 
digits into decimal, e.g. rwx -> 111 -> 7  

• combine the three numbers (one each for user, group and other) into a 
single octal number  

 

F i g u r e  5 . 3  
S y m b o l i c  t o  N u m e r i c  p e r m i s s i o n s  

Exercises 

5.11. Convert the following symbolic permissions to numeric  
rwxrwxrwx   
---------   
---r--r--   
r-sr-x---   
rwsrwsrwt   

5.12. Convert the following numeric permissions to symbolic  
710   
4755   
5755   
6750   
7000   



85321, Systems Administration Chapter 5:  Processes and Files 

David Jones (20.01.00) Page 122 

Changing file permissions  
The UNIX operating system provides a number of commands for users to 
change the permissions associated with a file. The following table provides a 
summary.  

Command Purpose 

chmod change the file permissions for a file  

umask set the default file permissions for any files 
to be created. Usually run as the user logs 
in.  

chgrp change the group owner of a file  

chown change the user owner of a file.  

T a b l e  5 . 5  
C o m m a n d s  t o  c h a n g e  f i l e  o w n e r s h i p  a n d  p e r m i s s i o n s   

chmod 

The chmod command is used to the change a file’s permissions. Only the user 
who owns the file can change the permissions of a file (the root user can also 
do it).  

Format  

chmod [-R] operation files 

The optional (the [ ]  are used to indicate optional) switch -R causes chmod to 
recursively descend any directories changing file permissions as it goes.  

files is the list of files and directories to change the permissions of.  

operation indicates how to change the permissions of the files. operation 
can be specified using either symbolic or absolute permissions.  

Numeric permissions  

When using numeric permissions operation is the numeric permissions to 
change the files permissions to.  For example 

chmod 770 my.file 
       

will change the file permissions of the file my.file to the numeric permissions 
770 .  

Symbolic permissions  

When using symbolic permissions operation has three parts who op 
symbolic_permission where  

• who specifies the category of user to change the permissions for 
It can be any combination of u for user, g for group, o for others and a for 
all categories.  



85321, Systems Administration Chapter 5:  Processes and Files 

David Jones (20.01.00) Page 123 

• op specifies how to change the permissions 
+ add permission, - remove permission, = set permission  

• permission specifies the symbolic permissions 
r  for read, w for write, x execute, s set uid/gid, t set sticky bit.  

Examples  

• chmod u+rwx temp.dat  
add rwx permission for the owner of the file, these permissions are added 
to the existing permissions  

• chmod go-rwx temp.dat  
remove all permissions for the group and other categories  

• chmod -R a-rwx /etc  
turn off all permissions, for all users, for all files in the /etc directory.  

• chmod -R a= /  
turn off all permissions for everyone for all files  

• chmod 770 temp.dat  
allow the user and group read, write and execute and others no access  

chown 

The UNIX operating system provides the chown command so that the owner of 
a file can be changed. However in most Unices only the root user can use the 
command.  

Two reasons why this is so are  

• in a file system with quotas (quotas place an upper limit of how many files 
and how much disk space a user can use) a person could avoid the quota 
system by giving away the ownership to another person  

• if anyone can give ownership of a file to root they could create a program 
that is setuid to the owner of the file and then change the owner of the file 
to root  

chgrp 

UNIX also supplies the command chgrp to change the group owner of a file. 
Any user can use the chgrp command to change any file they are the owner of. 
However you can only change the group owner of a file to a group to which 
you belong.  

For example  

dinbig$ whoami   
david  
dinbig$ groups  
users  
dinbig$ ls -l tmp  
-rwxr-xr-x 2 david users 1024 Feb 1 21:49 tmp 
dinbig$ ls -l /etc/passwd  



85321, Systems Administration Chapter 5:  Processes and Files 

David Jones (20.01.00) Page 124 

dinbig$ chgrp users /etc/passwd   
chgrp: /etc/passwd: Operation not permitted 
-rw-r--r-- 1 root root 697 Feb 1 21:21 /etc/passwd  
dinbig$ chgrp man tmp  
chgrp: you are not a member of group ‘man’: Operation not permitted  

In this example I’ve tried to change the group owner of /etc/passwd. This 
failed because I am not the owner of that file.  

I’ve also tried to change the group owner of the file tmp, of which I am the 
owner, to the group man. However I am not a member of the group man so it 
has also failed.  

chown and chgrp 

The commands chown and chgrp are used to change the owner and group 
owner of a file.  

Format  

 chown [-R] owner files 
 chgrp [-R] group files  

The optional switch -R works in the same was as the -R switch for chmod. It 
modifies the command so that it descends any directories and performs the 
command on those sub-directories and files in those sub-directories.  

owner is either a numeric user identifier or a username.  

group is either a numeric group identifier or a group name.  

files is a list of files of which you wish to change the ownership.  

Some systems (Linux included) allow owner in the chown command to take the 
format owner. group. This allows you to change the owner and the group 
owner of a file with one command.  

Examples  

• chown david /home/david  
Change the owner of the directory /home/david to david . This 
demonstrates one of the primary uses of the chown command. When a new 
account is created the root user creates a number of directories and files. 
Since root created them they are owned by root. In real life these files and 
directories should be owned by the new username.  

• chown -R root /  
Change the owner of all files to root.  

• chown david.users /home/david  
Change the ownership of the file /home/david so that it is owned by the 
user david  and the group users.  

• chgrp users /home/david  
Change the group owner of the directory /home/david to the group 
users. 



85321, Systems Administration Chapter 5:  Processes and Files 

David Jones (20.01.00) Page 125 

Default permissions  

When you create a new file it automatically receives a set of file permissions.  

dinbig:~$ touch testing  
dinbig:~$ ls -l testing  
-rw-r--r--   1 david    users           0 Feb 10 17:36 testing  
  

In this example the touch command has been used to create an empty file 
called testing.  The touch command usually updates the last modified date of a 
file to the current time.  However, if the file doesn’t exist it creates an empty 
file of that same name. 

In this example the file testing  has been given the default permissions rw-r-

-r-- . Any file I create will receive the same default permissions.  

umask  

The built-in shell command umask is used specify and view what the default 
file permissions are. Executing the umask command without any arguments 
will cause it to display what the current default permissions are. 

dinbig:~$ umask 
022            

By default the umask command uses the numeric format for permissions. It 
returns a number which specifies which permissions are turned off when a file 
is created.  

In the above example  

• the user has the value 0 
This means that by default no permissions are turned off for the user.  

• the group and other have the value 2 
This means that by default the write permission is turned off.  

You will notice that the even though the execute permission is not turned off 
my default file doesn’t have the execute permission turned on. I am not aware 
of the exact reason for this.  

umask versions  

Since umask is a built-in shell command the operation of the umask command 
will depend on the shell you are using. This also means that you’ll have to look 
at the man page for your shell to find information about the umask command.  

umask for bash   

The standard shell for Linux is bash. The version of umask for this shell 
supports symbolic permissions as well as numeric permissions. This allows 
you to perform the following. 

dinbig:~$ umask -S  
u=rwx,g=r,o=r 
dinbig:~$ umask u=rw,g=rw,o=  



85321, Systems Administration Chapter 5:  Processes and Files 

David Jones (20.01.00) Page 126 

dinbig:~$ umask -S  
u=rw,g=rw,o=    

Exercises 

5.13. Use the umask command so that the default permissions for new files 
are set to 
rw-------   
772   

5.14. How do you test that this is working correctly? 

File permissions and director ies  
As shown in table 5.2 file permissions have a slightly different effect on 
directories than they do on files.  

The following example is designed to reinforce your understanding of the 
effect of file permissions on directories.  

For example  

Assume that  

• I have an account on the same UNIX machine as you  

• we belong to different groups  

• I want to allow you to access the text for assignment one  

• I want you to copy your finished assignments into my directory  

• But I don’t want you to see anything else in my directories  

The following diagram represents part of my directory hierarchy including the 
file permissions for each directory.  

F i g u r e  5 . 4  
P e r m i s s i o n s  a n d  D i r e c t o r i e s  

What happens if?  

What happens if you try the following commands  



85321, Systems Administration Chapter 5:  Processes and Files 

David Jones (20.01.00) Page 127 

• ls -l david  
To perform an ls you must have read permission on the directory. In this 
case you don’t. Only myself, as the owner of the file has read permission, 
so only I can obtain a listing of the files in my directory.  

• cat david/phone.book  
You'’re trying to have a look at my phone book but you can't. You have 
permission to do things to files in my directory because you have execute 
permission on the directory david. However the permissions on the 
phone.book  file mean that only I can read it. The same things occurs if you 
try the command cp david/phone.book ~/phone.book . To the file 
system you are trying to do the same thing, read the file phone.book.  

• ls david/85321  The permissions are set up so you can get a listing of the 
files in the david/85321  directory. Notice you have read permission on the 
85321  directory.  

• cat david/85321/assign.txt  
Here you're trying to have a look at the assignment text. This will work. 
You have read permission on the file so you can read it. You have execute 
permission on the directories 85321 and david  which means you can gain 
access to files and directories within those directories (if the permissions on 
the files let you).  

• cat david/85321/solutions/assign1.sol  
Trying to steal a look at the solutions? Well you have the permissions on 
the file to do this. But you don't have the permissions on the directory 
solutions  so this will fail.  
What would happen if I executed this command  

•  chmod o+r david/85321/solutions  
This would add read permission for you to the directory solutions. Can 
you read the assign1.sol  file now? No you can't. To read the file or do 
anything with a file you must have execute permission on the directory it is 
in.  

• cp my.assign david/85321/assign.txt   
What's this? Trying to replace my assignment with one of your own? Will 
this work? No because you don't have write permission for the file 
assign.txt .  

Links 
As mentioned earlier in this chapter it is possible for a single UNIX file to be 
known by more than one name.  This is achieved using links.  This section 
provides a brief overview of the two types of links supported by Linux, hard 
and soft. 

Links are useful for a number of reasons 

• simplify file paths 
Rather than ask users to remember that a certain data file is stored in the 
file 



85321, Systems Administration Chapter 5:  Processes and Files 

David Jones (20.01.00) Page 128 

/usr/local/www/data/1999/T3/85349/assign1/solutions.txt  
you can create a link /85349/a1/solutions.txt  which be used by 
people. 

• Support different locations 
Some versions of UNIX and UNIX commands expect files or directories to 
be in different locations.  For example, some expect the executable 
program sendmail to be in /usr/lib/sendmail  while others expect it to 
be in /usr/sbin/sendmail .  Under Linux /usr/lib/sendmail  is a 
hard link to /usr/sbin/sendmail . 

The idea behind links is that you can use a different name to refer to the same 
file without having to duplicate the data blocks for the file.   

Creating Links 

Links, both hard and soft links, are created using the ln command.  By default 
ln creates hard links.  The ln command has two main formats 

• ln target [link-name] 
Where target specifies the name of the file being linked to and link-name is 
the optional name of the link to create.  Some examples 

[david@faile tmp]$ ln /etc/passwd  
[david@faile tmp]$ ln /etc/passwd fred  
[david@faile tmp]$ ls -il * /etc/passwd 
 308647 -rw-r--r--   3 root     root          681 Jan  3 08:37 
/etc/passwd 
 308647 -rw-r--r--   3 root     root          681 Jan  3 08:37 fred 
 308647 -rw-r--r--   3 root     root          681 Jan  3 08:37 passwd 

With the first ln command the link-name is not specified.  In this instance the 
ln command creates a hard link with the same name as the target (passwd).  In 
the second example the link-name is specified.  The output of the ls command 
shows an important point about hard links (remember by default ln creates 
hard links).  Since I am using the -i switch of the ls command we are shown 
the inodes for the three files. Each of these filenames (/etc/passwd, fred and 
passwd) all point to the same file and so they have the same inode. 

• ln target-list  directory 
In this format the ln command allows you to specify multiple targets 
followed by a directory name.  The end result is that the directory will end 
up containing hard links to each of the targets.  The names of the hard links 
will match that of the targets.  For example, 

[david@faile tmp]$ ln /etc/passwd /usr/share/magic /etc/group . 
[david@faile tmp]$ ls -il 
total 184 
 308651 -rw-r--r--   2 root     root          459 Oct  7 14:24 group 
 227274 -rw-r--r--   2 root     root       173852 Aug 24 08:06 magic 
 308647 -rw-r--r--   2 root     root          681 Jan  3 08:37 passwd 
[david@faile tmp]$ ls -il /etc/passwd /usr/share/magic /etc/group 
 308651 -rw-r--r--   2 root     root          459 Oct  7 14:24 /etc/group 
 308647 -rw-r--r--   2 root     root          681 Jan  3 08:37 /etc/passwd 
 227274 -rw-r--r--   2 root     root       173852 Aug 24 08:06 
/usr/share/magic 



85321, Systems Administration Chapter 5:  Processes and Files 

David Jones (20.01.00) Page 129 

In this example there are three targets, /etc/passwd /usr/share/magic and 
/etc/group, and the directory specified is . (the full stop character which 
indicates the current directory).  Again you can see the connection between 
the targets and the hard links via the similarity in the inodes. 

The ln command supports a number of command-line switches which can be 
used to modify its operation in a number of different ways.  The options 
include 

• -b, the backup switch 
If there is already a file with the same name as the link this switch will 
make a backup of the existing file. 

• -s, the soft link switch 
This forces ln to create a soft link rather than a hard link. 

The manual page for the ln command explains further.  Some examples 
[david@faile tmp]$ ln -b /etc/group passwd 
[david@faile tmp]$ ln -sb /etc/group magic 
[david@faile tmp]$ ls -il 
total 188 
 308651 -rw-r--r--   3 root     root          459 Oct  7 14:24 group 
1105693 lrwxrwxrwx   1 david    david          10 Jan  9 14:34 magic -> 
/etc/group 
 227274 -rw-r--r--   2 root     root       173852 Aug 24 08:06 magic~ 
 308651 -rw-r--r--   3 root     root          459 Oct  7 14:24 passwd 
 308647 -rw-r--r--   2 root     root          681 Jan  3 08:37 passwd~ 

The first thing to notice in the output of the ls command are the two new files 
magic~ and passwd~.  These are the backup files which were created by using 
the -b switch of the ln command.  The ln command creates backups by adding 
a ~ to the filename. 

The other difference to notice is magic -> /etc/group output for the magic file.  
This is how the ls command indicates a soft link.  Also notice how the file type 
for the symbolic link is now l. 

Hard and soft links, the differences 

The differences between hard and soft links can be placed into two categories 

• implementation, and 

• operational. 

The implementation details will be discussed in more detail in the File System 
chapter later in the text and involves how the operating system actually 
implements hard and soft links.  One of the major implementation differences 
is that hard links and the file they are pointing to refer to the same inode where 
as soft links have their own inodes. 

The difference in inodes is the reason behind the operational differences 
between the two types of links.  Standard file operations which use or modify 
data which is stored on the inode will behave differently with soft links than 
they do with hard links.  Remember soft links use different inodes.  So if you 
change any information on the inode of a soft link that same change will not be 
made on the inode of the file the soft link is pointing to.  However, making any 



85321, Systems Administration Chapter 5:  Processes and Files 

David Jones (20.01.00) Page 130 

change to the inode information of a hard link also changes the inode 
information for the file the link is pointing to. 

Earlier in this chapter we introduced the information which is stored on the 
inode including file permissions, modified date, file size etc.  Let’s create some 
links and compare the results. 

[david@faile tmp]$ ln -s ../rec/file.jpg file  
[david@faile tmp]$ ln ../rec/anna.jpg anna 
[david@faile tmp]$ ls -il file anna ../rec/anna.jpg ../rec/file.jpg 
 537951 -rw-rw-r--   2 david    david        5644 Dec 20 19:13 
../rec/anna.jpg 
 537955 -rwxrwxr-x   1 david    david       17833 Dec 20 19:20 
../rec/file.jpg 
 537951 -rw-rw-r--   2 david    david        5644 Dec 20 19:13 anna 
1105712 lrwxrwxrwx   1 david    david          15 Jan  9 15:19 file -> 
../rec/file.jpg 

Notice how the information displayed about the hard link (anna) and the file it 
points to (../rec/anna.jpg) are exactly the same.  This idicates a hard link.  
Notice how the information about the soft link (file) and the file it points to 
(../rec/file.jpg) are different? 

[david@faile tmp]$ chmod a+x anna 
[david@faile tmp]$ chmod a-x file 
[david@faile tmp]$ ls -il file anna ../rec/anna.jpg ../rec/file.jpg 
 537951 -rwxrwxr-x   2 david    david        5644 Dec 20 19:13 
../rec/anna.jpg 
 537955 -rw-rw-r--   1 david    david       17833 Dec 20 19:20 
../rec/file.jpg 
 537951 -rwxrwxr-x   2 david    david        5644 Dec 20 19:13 anna 
1105712 lrwxrwxrwx   1 david    david          15 Jan  9 15:19 file -> 
../rec/file.jpg 

The chmod command changes the permissions associated with a file.  From the 
above you can see that if you change the file permissions for a hard link that 
the permissions for both the hard link and the file it is pointing to change.  
However for the software link only the permissions for the file being pointed 
to change. 

Another important difference between hard and soft links is what happens 
when you start deleting files. 

[david@faile tmp]$ rm ../rec/file.jpg ../rec/anna.jpg 
[david@faile tmp]$ ls -il file anna ../rec/anna.jpg ../rec/file.jpg 
ls: ../rec/anna.jpg: No such file or directory 
ls: ../rec/file.jpg: No such file or directory 
 537951 -rwxrwxr-x   1 david    david        5644 Dec 20 19:13 anna 
1105712 lrwxrwxrwx   1 david    david          15 Jan  9 15:19 file -> 
../rec/file.jpg 
[david@faile tmp]$ file anna file 
anna: JPEG image data, JFIF standard 
file: broken symbolic link to ../rec/file.jpg 

When you remove a hard link or the file it points to it simply reduces the link 
count.    The link count is the first number after the file permissions.  Notice 
how the file anna has a link count of 1 in the above example where it had a 2 in 
earlier examples.  The file anna still has a link to the data files contained in the 
image anna.jpg. 

On the other hand when you remove the file a soft link points to you are in 
trouble.  The symbolic link does not know that the target has disappeared.  The 
output of the file command shows this. 



85321, Systems Administration Chapter 5:  Processes and Files 

David Jones (20.01.00) Page 131 

Searching the file hierarchy 
A common task for a Systems Administrator is searching the UNIX file 
hierarchy for files which match certain criteria.  Some common examples of 
what and why a Systems Administrator may wish to do this include 

• searching for very large files 

• finding where on the disk a particular file is  

• deleting all the files owned by a particular user  

• displaying the names of all files modified in the last two days. 

Given the size of the UNIX file hierarchy and the number of files it contains 
this isn’t a task that can be done by hand.  This is where the find command 
becomes useful. 

The find  command  

The find command is used to search through the directories of a file system 
looking for files that match a specific criteria.  Once a file matching the criteria 
is found the find command can be told to perform a number of different tasks 
including running any UNIX command on the file.  

find  command format  

The format for the find command is  

find [ path-list] [ expression]   

path-list is a list of directories in which the find command will search for 
files. The command will recursively descend through all sub-directories under 
these directories.  The expression component is explained in the next section.   

Some examples 
[root@faile tmp]# find /etc -type s 

The path-list contains just /etc while the expression is -type s.  In this case 
there are no files underneath the /etc directory which match the expression. 

[root@faile tmp]# find /etc /usr/share -name magic -o -name passwd 
/etc/passwd 
/etc/pam.d/passwd 
/etc/uucp/passwd 
/usr/share/magic 

In this example the path-list contains the directories /etc and /usr/share and the 
expression is -name magic -o -name passwd.  This command finds four files 
under either the /etc or /usr/share directories which have the filename passwd 
or magic. 

Both the path and the expression are optional. If you run the find command 
without any parameters it uses a default path, the current directory, and a 
default expression, print the name of the file. The following is an example of 
what happens 



85321, Systems Administration Chapter 5:  Processes and Files 

David Jones (20.01.00) Page 132 

dinbig:~$ find  
. 
./iAm 
./iAm.c 
./parameters 
./numbers 
./pass 
./func 
./func2 
./func3 
./pattern  
./Adirectory 
./Adirectory/oneFile  
       

The default path is the current directory. In this example the find command 
has recursively searched through all the directories within the current 
directory.  

The default expression is -print. This is a find  command that tells the find 
command to display the name of all the files it found.  

Since there was no test specified the find command matched all files. 

find  expressions  

A find  expression can contain the following components  

• options, 
These modify the way in which the find command operates.  

• tests, 
These decide whether or not the current file is the one you are looking for.  

• actions, 
Specify what to do once a file has been selected by the tests.  

• and operators. 
Used to group expressions together.  

find  options  

Options are normally placed at the start of an expression. Table 5.6 
summarises some of the find commands options.  

Option Effect 

-daystart   for tests using time measure time from the beginning of today  

-depth   process the contents of a directory before the directory  

-maxdepth number  number is a positive integer that specifies the maximum number 
of directories to descend  

-mindepth number  number is a positive integer that specifies at which level to start 
applying tests  

-mount   don’t cross over to other partitions  

-xdev   don’t cross over to other partitions  

T a b l e  5 . 6  
f i n d  o p t i o n s   



85321, Systems Administration Chapter 5:  Processes and Files 

David Jones (20.01.00) Page 133 

For example  

The following are two examples of using find’s options. Since I don’t specify 
a path in which to start searching the default value, the current directory, is 
used. 

dinbig:~$ find -mindepth 2  
./Adirectory/oneFile 

In this example the mindepth option tells find to only find files or directories 
which are at least two directories below the starting point. 

dinbig:~$ find -maxdepth 1  
. 
./iAm 
./iAm.c 
./parameters 
./numbers 
./pass 
./func 
./func2 
./func3 
./pattern 
./Adirectory  

This option restricts find to those files which are in the current directory. 

find  tests  

Tests are used to find particular files based on  

• when the file was last accessed  

• when the file’s status was last changed  

• when the file was last modified  

• the size of the file  

• the file’s type  

• the owner or group owner of the file  

• the file’s name  

• the file’s inode number  

• the number and type of links the file has to it  

• the file’s permissions  

Table 5.7 summarises find’s tests. A number of the tests take numeric values.  
For example, the number of days since a file was modified.  For these 
situations the numeric value can be specified using one of the following 
formats (in the following n is a number) 

• +n 
greater than n  

• - n 
less than n  



85321, Systems Administration Chapter 5:  Processes and Files 

David Jones (20.01.00) Page 134 

• n 
equal to n  

For example  

Some examples of using tests are shown below. Note that in all these examples 
no command is used. Therefore the find command uses the default command 
which is to print the names of the files.  

• find . -user david  
Find all the files under the current directory owned by the user david  

• find / -name \*.html  
Find all the files one the entire file system that end in .html. Notice that 
the * must be quoted so that the shell doesn’t interpret it (explained in more 
detail below).  Instead we want the shell to pass the *.html to the find 
command and have it match filenames. 

• find /home -size +2500k -mtime -7  
Find all the files under the /home directory that are greater than 2500 
kilobytes in size and have been in modified in the last seven days.  

The last example shows it is possible to combine multiple tests. It is also an 
example of using numeric values. The +2500 will match any value greater than 
2500. The -7 will match any value less than 7.  

 

Shell special characters 

The shell is the program which implements the UNIX 
command line interface at which you use these commands.  
Before executing commands the shell looks for special 
characters.  If it finds any it performs some special operations.  
In some cases, like the previous command, you don’t want the 
shell to do this.  So you quote the special characters.  This 
process is explained in more detail in the following chapter. 



85321, Systems Administration Chapter 5:  Processes and Files 

David Jones (20.01.00) Page 135 

 

Test Effect 

-amin n file last access n minutes ago  

-anewer file the current file was access more recently than file  

-atime n file last accessed n days ago  

-cmin n file’s status was changed n minutes ago  

-cnewer file the current file’s status was changed more recently than file’s  

-ctime n file’s status was last changed n days ago  

-mmin n file’s data was last modified n minutes ago  

-mtime n the current file’s data was modified n days ago  

-name pattern the name of the file matches pattern  -iname  is a case 
insensitive version of –name   -regex  allows the use of REs to 
match filename  

-nouser-nogroup the file’s UID or GID does not match a valid user or group  

-perm mode the file’s permissions match mode (either symbolic or numeric)  

-size n[bck] the file uses n units of space, b is blocks, c is bytes, k is kilobytes 

-type c the file is of type c where c can be block device file, character 
device file, directory, named pipe, regular file, symbolic link, 
socket  

-uid n -gid n the file’s UID or GID matches n  

-user uname the file is owned by the user with name uname  

T a b l e  5 . 7  
f i n d  t e s t s   

find  actions  

Once you’ve found the files you were looking for you want to do something 
with them. The find  command provides a number of actions most of which 
allow you to either  

• execute a command on the file, or 

• display the name and other information about the file in a variety of 
formats  

For the various find actions that display information about the file you are 
urged to examine the manual page for find  

Executing a command  

find  has two actions that will execute a command on the files found. They are 
-exec  and -ok.  
The format to use them is as follows 



85321, Systems Administration Chapter 5:  Processes and Files 

David Jones (20.01.00) Page 136 

-exec command ; 
-ok command ;  

command is any UNIX command.  

The main difference between exec and ok is that ok will ask the user before 
executing the command. exec just does it.  

For example  

Some examples of using the exec and ok actions include  

• find . -exec grep hello \{\} \;  
Search all the files under the local directory for the word hello.  

• find / -name \*.bak -ok rm \{\} \;  
Find all files ending with .bak and ask the user if they wish to delete those 
files.  

{}  and ;   

The exec and ok actions of the find command make special use of {} and ; 
characters.  All the characters here ( { and } and ; ) all have special meaning to 
the shell and as a result  they must be quoted when used with the find 
command.  

The find command uses {} to refer to the filename that find has just tested. So 
in the last example rm \{\}  will delete each file that the find tests match.  

The ; is used to indicate the end of the command to be executed.  

Exercises 

5.15. Use find  to print the names of every file on your file system that has 
nothing in it find where the file XF86Config is  

5.16. Write find commands to  
-        find all the files called core and display their full details  
-        find all the files called core which haven’t been accessed in the last  
         week and delete them  
-        find all the files which are greater than 1Mb in size, were created  
         in the last month and are not owned by the root user  

5.17. Write find commands to  
 -        find all the files called core and display their full details  
 -        find all the files called core which haven’t been accessed in the  
          last week and delete them  
 -        find all the files which are greater than 1Mb in size, were created  
          in the last month and are not owned by the root user  



85321, Systems Administration Chapter 5:  Processes and Files 

David Jones (20.01.00) Page 137 

Performing commands on many files  
Every UNIX command you execute requires a new process to be created.  
Creating a new process is a fairly heavyweight procedure for the operating 
system and can take quite some time.  When you are performing a task it can 
save time if you minimise the number of new processes which are created. 

It is common for a Systems Administrator to want to perform some task which 
requires a large number of processes.  Some uses of the find command offer 
a good example.   

For example 

Take the requirement to find all the HTML files on a Web site which contain 
the word expired. There are at least three different ways we can do this  

• using the find  command and the -exec switch,  

• using the find  command and back quotes ‘‘,  

• using the find  command and the xargs command.  

In the following we’ll look at each of these.  

More than one way to do something 

One of the characteristics of the UNIX operating system is that 
there is always more than one way to perform some task. 

find  and -exec   

We’ll assume the files we are talking about in each of these examples are 
contained in the directory /usr/local/www   

find /usr/local/www -name \*.html -exec grep -l expired \{\} \; 

The -l  switch of grep causes it to display the filename of any file in which it 
finds a match. So this command will list the names of all the files containing 
expired .  

While this works there is a slight problem, it is inefficient. These commands 
work as follows  

• find  searches through the directory structure,  

• every time it finds a file that matches the test (in this example that it has the 
extension html) it will run the appropriate command  

• the operating system creates a new process for the command,  

• once the command has executed for that file it dies and the operating 
system must clean up,  

• now we restart at the top with find looking for the appropriate file  

On any decent Web site it is possible that there will be tens and even hundreds 
of thousands of HTML files.  For example, the 1999 website for 85321 
contained 11,051 HTML files.  This implies that this command will result in 



85321, Systems Administration Chapter 5:  Processes and Files 

David Jones (20.01.00) Page 138 

hundreds of thousands of processes being created.  This can take quite some 
time. 

find and back quotes  

A solution to this is to find all the matching files first, and then pass them to a 
single grep command.  

grep -l expired ‘find /usr/local/www -name \*.html‘  

In this example there are only two processes created.  One for the find 
command and one for the grep. 

 

Back quotes 

Back quotes ‘‘ are an example of the shell special characters 
mentioned previously.  When the shell sees ‘‘ characters it 
knows it must execute the command enclosed by the ‘‘ and 
then replace the command with the output of the command. 

In the above example the shell will execute the find command 
which is enclosed by the ‘‘ characters.  It will then replace the 
‘find /usr/local/www -name \*.html‘ with the output 
of the command.  Now the shell executes the grep 
command. 

Back quotes are explained in more detail in the 
next chapter. 

To show the difference that this makes you can use the time command. time 
is used to record how long it takes for a command to finish (and a few other 
stats). The following is an example from which you can see the significant 
difference in time and resources used by reducing the number of processes. 

beldin:~$ time grep -l expired ‘find 85321/* -name index.html‘  
0.04user 0.22system 0:02.86elapsed 9%CPU (0avgtext+0avgdata 
0maxresident)k 0inputs+0outputs (0major+0minor)pagefaults 0swaps  
beldin:~$ time find 85321/* -name index.html -exec grep -l expired 
\{\} \;  
1.33user 1.90system 0:03.55elapsed 90%CPU (0avgtext+0avgdata 
0maxresident)k 0inputs+0outputs (0major+0minor)pagefaults 0swaps  

 

The time command can also report a great deal more information about a 
process and its interaction with the operating system.  Especially if you use the 
verbose option (time –v some_command) 

find  and xargs   

While in many cases the combination of find and back quotes will work 
perfectly, this method has one serious drawback as demonstrated in the 
following example.  

beldin:~$ grep -l expired ‘find 85321/* -name \*‘   
bash: /usr/bin/grep: Arg list too long  



85321, Systems Administration Chapter 5:  Processes and Files 

David Jones (20.01.00) Page 139 

The problem here is that a command line can only be so long. In the above  
example the find command found so many files that the names of these files 
exceeded the limit.  

This is where the xargs command enters the picture.  

Rather than pass the list of filenames as a parameter to the command, xargs 
allows the list of filenames to be passed as standard input (standard input is 
explained in more detail in a following chapter). This means we side-step the 
problem of exceeding the allowed maximum length of a command line..  

Have a look at the man page for xargs for more information. Here is the 
example rewritten to use xargs  

find /usr/local/www -name \* | xargs grep -l expired  

There are now three processes created, find, xargs and grep.  However it 
does avoid the problem of the argument list being too long. 

Conclusion  
UNIX is a multi-user operating system and as such must provide mechanisms 
to uniquely identify users and protect the resources of one user from other 
users. Under UNIX users are uniquely identified by a username and a user 
identifier (UID). The relationship between username and UID is specified in 
the /etc/passwd  file.  
UNIX also provides the ability to collect users into groups. A user belongs to 
at least one group specified in the /etc/passwd file but can also belong to 
other groups specified in the /etc/group  file. Each group is identified by both 
a group name and a group identifier (GID). The relationship between group 
name and GID is specified in the /etc/group file.  
All work performed on a UNIX computer is performed by processes. Each 
process has a real UID/GID pair and an effective UID/GID pair. The real 
UID/GID match the UID/GID of the user who started the process and are used 
for accounting purposes. The effective UID/GID are used for deciding the 
permissions of the process. While the effective UID/GID are normally the 
same as the real UID/GID it is possible using the setuid/setgid file permissions 
to change the effective UID/GID so that it matches the UID and GID of the file 
containing the process’ code.  

The UNIX file system uses a data structure called an inode to store information 
about a file including file type, file permissions, UID, GID, number of links, 
file size, date last modified and where the files data is stored on disk. A file’s 
name is stored in the directory which contains it.  

A file’s permissions can be represented using either symbolic or numeric 
modes. Valid operations on a file include read, write and execute. Users 
wishing to perform an operation on a file belong to one of three categories the 
user who owns the file, the group that owns the file and anyone (other) not in 
the first two categories.  

A file’s permissions can only be changed by the user who owns the file and are 
changed using the chmod command. The owner of a file can only be changed 
by the root user using the chown command. The group owner of a file can be 



85321, Systems Administration Chapter 5:  Processes and Files 

David Jones (20.01.00) Page 140 

changed by root user or by the owner of the file using the chgrp command. 
The file’s owner can only change the group to another group she belongs to.  

Links both hard and soft are mechanisms by which more than one filename can 
be used to refer to the same file.  

Review Questions 
5.1 

For each of the following commands indicate whether they are built-in shell 
commands, "normal" UNIX commands or not valid commands. If they are 
"normal" UNIX commands indicate where the command’s executable program 
is located.  

� alias  
� history  
� rename  
� last  

 

5.2  
How would you find out what your UID, GID and the groups you currently 
belong to?  

 

5.3  

Assume that you are logged in with the username david and that your current 
directory contains the following files  

bash# ls –il 

total 2 
103807 -rw-r--r-- 2 david users    0 Aug 25 13:24 agenda.doc 
103808 -rwsr--r-- 1 root  users    0 Aug 25 14:11 meeting 
103806 -rw-r--r-- 1 david users 2032 Aug 22 11:42 minutes.txt 
103807 -rw-r--r-- 2 david users    0 Aug 25 13:24 old_agenda  

   

For each of the following commands indicate  
� whether or not it will work,  
� if it works specify how the above directory listing will change,  
� if it doesn’t work why?  

 
 

chmod 777 minutes.txt   

chmod u+w agenda.doc  

chmod o-x meeting  

chmod u+s minutes.txt  

ln -s meeting new_meeting  

chown root old_agenda   



85321, Systems Administration Chapter 5:  Processes and Files 

David Jones (20.01.00) Page 141 

 

5.4    

Assume that the following files exist in the current directory.  

bash$ ls -li  
total 1 
32845 -rw-r--r--  2 jonesd   users  0 Apr   6 15:38 cq_uni_doc 
32845 -rw-r--r--  2 jonesd   users  0 Apr   6 15:38 cqu_union 
32847 lrwxr-xr-x  1 jonesd   users  10 Apr  6 15:38 osborne -> 
cq_uni_doc 
  

For each of the following commands explain how the output of the command 
ls -li  will change AFTER the command has been executed. Assume that that 
each command starts with the above information  

For example, after the command mv cq_uni_doc CQ.DOC the only change 
would be that entry for the file cq_uni_doc would change to  

32845 -rw-r--r--  2 jonesd   users  0 Apr   6 15:38 CQ.DOC       
 

chmod a-x osborne 

chmod 770 cqu_union 

rm cqu_union 

rm cqu_uni_doc 

The files cq_uni_doc  and cqu_union  both point to the same file using a hard 
link. Above I have stated that if you execute the command mv cq_uni_doc 

CQ.DOC the only thing that changes is the name of the file cq_uni_doc. Why 
doesn’t the name of the file cqu_union change also?  



85321, Systems Administration Chapter 6: The Shell 

David Jones (20.01.00) Page 142 

Chapter 
The Shell 

Introduction  
You will hear many people complain that the UNIX operating system is hard 
to use. They are wrong. What they actually mean to say is that the UNIX 
command line interface is difficult to use. This is the interface that many 
people think is UNIX.  In fact, this command line interface, provided by a 
program called a shell, is not the UNIX operating system and it is only one of 
the many different interfaces that you can use to perform tasks under UNIX.  
By this stage many of you will have used some of the graphical user interfaces 
provided by the X-Windows system. 

The shell interface is a powerful tool for a Systems Administrator and one that 
is often used.  This chapter introduces you to the shell, it’s facilities and 
advantages.  It is important to realise that the shell is just another UNIX 
command and that there are many different sorts of shell. The responsibilities 
of the shell include  

� providing the command line interface  
� performing I/O redirection  
� performing filename substitution  
� performing variable substitution  
 and providing an interpreted programming language  

The aim of this chapter is to introduce you to the shell and the first four of the 
responsibilities listed above. The interpreted programming language provided 
by a shell is the topic of chapter 8.  

Executing Commands  
As mentioned previously the commands you use such as ls and cd are stored 
on a UNIX computer as executable files.  How are these files executed?  This 
is one of the major responsibilities of a shell.  The command line interface at 
which you type commands is provided by the particular shell program you are 
using (under Linux you will usually be using a shell called bash).  When you 
type a command at this interface and hit enter the shell performs the following 
steps 

! wait for the user to enter a command  
" perform a number of tasks if the command contains any special characters  
# find the executable file for the command, if the file can't be found generate 

an error message  
$ fork off a child process that will execute the command,  



85321, Systems Administration Chapter 6: The Shell 

David Jones (20.01.00) Page 143 

% wait until the command is finished (the child process dies) and then return 
to the top of the list  

Different shells  

There are many different types of shells. Table 6.1 provides a list of some of 
the more popular UNIX shells. Under Linux most users will be using bash, the 
Bourne Again Shell. bash  is an extension of the Bourne shell and uses the 
Bourne shell syntax. All of the examples in this text are written using the bash 

syntax .  
All shells fulfil the same basic responsibilities. The main differences between 
shells include  

& the extra features provided 
Many shells provide command history, command line editing, command 
completion and other special features.  

' the syntax 
Different shells use slightly different syntax for some commands.  

 

Shell Program name Description 

Bourne shell sh  the original shell from AT&T, available on all 
UNIX machines  

C shell csh  shell developed as part of BSD UNIX  

Korn shell ksh  AT&T improvement of the Bourne shell  

Bourne again shell bash  Shell distributed with Linux, version of Bourne 
shell that includes command line editing and 
other nice things  

T a b l e  6 . 1  
D i f f e r e n t  U N I X  s h e l l s   

The C shell and its various versions have been popular in some fields.  
However, there are a number of problems with the C shell.  The 85321 
Website contains a pointer to a document entitled "C Shell Considered 
Harmful".  If you really want to know why we use the Bourne shell syntax 
read this document. 

Starting a shell  

When you log onto a UNIX machine the UNIX login process automatically 
executes a shell for you. Which shell is executed is defined in the last field of 
your entry in the /etc/passwd  file.  

The last field of every line of /etc/passwd  specifies which program to 
execute when the user logs in. The program is usually a shell (but it doesn’t 
have to be).  



85321, Systems Administration Chapter 6: The Shell 

David Jones (20.01.00) Page 144 

Exercises 

6.1. What shell is started when you login?  

 

The shell itself is just another executable program. This means you can choose 
to run another shell in the same way you would run any other command by 
simply typing in the name of the executable file. When you do the shell you 
are currently running will find the program and execute it.  

To exit a shell any of the following may work (depending on how your 
environment is set up).  

( logout  
) exit  
* CTRL-D  

By default control D is the end of file (EOF) marker in UNIX.  By 
pressing CTRL-D you are telling the shell that it has reached the end of the 
file and so it exits.  In a later chapter which examines shell programming 
you will see why shells work with files. 

For example  

The following is a simple example of starting other shells.  Most different 
shells use a different command-line prompt. 

bash$ sh  
$ csh  
% tcsh  
> exit  
%  
$  
bash$ 

 

In the above my original login shell is bash. A number of different shells are 
then started up. Each new shell in this example changes the prompt (this 
doesn’t always happen). After starting up the tcsh shell I’ve then exited out of 
all the new shells and returned to the original bash.  

Parsing the command line 
The first task the shell performs when you enter a command is to parse the 
command line.  This means the shell takes what you typed in and breaks it up 
into components and also changes the command-line if certain special 
characters exist.  Special characters are used for a number of purposes and are 
used to modify the operation of the shell. 

Table 6.2 lists most of the special characters which the shell recognises and the 
meaning the shell places on these characters.  In the following discussion the 
effect of this meaning and what the shell does with these special characters 
will be explained in more detail. 



85321, Systems Administration Chapter 6: The Shell 

David Jones (20.01.00) Page 145 

 

Character(s) Meaning 

white space Any white space characters (tabs, spaces) 
are used to separate arguments multiple 
white space characters are ignored  

newline character used to indicate the end of the command-
line  

’ " \ special quote characters that change the 
way the shell interprets special characters  

& Used after a command, tells the shell to run 
the command in the background  

< >> << ‘ | I/O redirection characters  

* ? [ ] [^ filename substitution characters  

$ indicate a shell variable  

; used to separate multiple commands on the 
one line  

T a b l e  6 . 2  
S h e l l  s p e c i a l  c h a r a c t e r s   

The Command L ine 
The following section examines, and attempts to explain, the special shell 
characters which influence the command line.  This influence includes 

+ breaking the command line into arguments 
, allows more than one command to a line 
- allows commands to be run in the background 

Arguments 

One of the first steps for the shell is to break the line of text entered by the user 
into arguments.  This is usually the task of whitespace characters. 

What will the following command display? 

echo hello          there my friend   

It won’t display  

hello        there my friend   

instead it will display  

hello there my friend   

When the shell examines the text of a command it divides it into the command 
and a list of arguments.  A white space character separates the command and 
each argument. Any duplicate white space characters are ignored. The 
following diagram demonstrates.  



85321, Systems Administration Chapter 6: The Shell 

David Jones (20.01.00) Page 146 

 

F i g u r e  6 . 1  
S h e l l s ,  w h i t e  s p a c e  a n d  a r g u m e n t s  

Eventually the shell will execute the command.  The shell passes to the 
command a list of arguments.  The command then proceeds to perform its 
function. In the case above the command the user entered was the echo 
command.  The purpose of the echo command is to display each of its 
arguments onto the screen separated by a single space character.  

The important part here is that the echo command never sees all the extra 
space characters between hello and there.  The shell removes this whilst it 
is performing its parsing of the command line. 

One command to a line 

The second shell special character in Table 6.2 is the newline character.  The 
newline character tells the shell that the user has finished entering a command 
and that the shell should start parsing and then executing the command.  The 
shell makes a number of assumptions about the command line a user has 
entered including 

. there is only one command to each line 
/ the shell should not present the next command prompt until the command 

the user entered is finished executing. 

This section examines how some of the shell special characters can be used to 
change these assumptions. 

Multiple commands to a line  

The ; character can be used to place multiple commands onto the one line.  

ls ; cd /etc ; ls 
       

The shell sees the ; characters and knows that this indicates the end of one 
command and the start of another.  

Commands in the background  

By default the shell will wait until the command it is running for the user has 
finished executing before presenting the next command line prompt.  This 



85321, Systems Administration Chapter 6: The Shell 

David Jones (20.01.00) Page 147 

default operation can be changed by using the & character.  The & character 
tells the shell that it should immediately present the next command line prompt 
and run the command in the background. 

This provides major benefits if the command you are executing is going to take 
a long time to complete.  Running it in the background allows you to go on and 
perform other commands without having to wait for it to complete. 

However, you won’t wish to use this all the time as some confusion between 
the output of the command running in the background and shell command 
prompt can occur. 

For example 

The sleep command usually takes on argument, a number.  This number 
represents the number of seconds the sleep command should wait before 
finishing.  Try the following commands on your system to see the difference 
the & character can make. 

bash$ sleep 10  
bash$ sleep 10  & 

Filename substitution 
In the great majority of situations you will want to use UNIX commands to 
manipulate files and directories in some way.  To make it easier to manipulate 
large numbers of commands the UNIX shell recognises a number of characters 
which should be replaced by filenames. 

This process is called ether filename substitution or filename globbing. 

For example 

You have a directory which contains HTML files (an extension of .html), 
GIF files (an extension of .gif), JPEG files (an extension .jpg) and a range 
of other files.  You wish to find out how big all the HTML files are.  

The hard way to do this is to use the ls –l command and type in all the 
filenames.   

The simple method is to use the shell special character *, which represents any 
0 or more characters in a file name 

ls –l *.html 

In the above, the shell sees the * character and recognises it as a shell special 
character.  The shell knows that it should replace *.html with any files that 
have filenames which match.  That is, have 0 or more characters, followed by 
.html 



85321, Systems Administration Chapter 6: The Shell 

David Jones (20.01.00) Page 148 

 

UNIX doesn’t use extensions 

MS-DOS and Windows treat a file'’s extension as special.  
UNIX does not do this.  Refer to the previous chapter and its 
discussion of magic numbers. 

Table 6.3 lists the other shell special characters which are used in filename 
substitution. 

 

Character What it matches 

* 0 or more characters 

? 1 character 

[ ] matches any one character between 
the brackets 

[^ ] matches any one character NOT in 
the brackets 

T a b l e  6 . 3  
F i l e n a m e  s u b s t i t u t i o n  s p e c i a l  c h a r a c t e r s  

Some examples of filename substitution include 
0

cat *  
*  will be replaced by the names of all the files and directories in the 
current directory. The cat command will then display the contents of all 
those files.  

1

ls a*bc  
a*bc  matches all filenames that start with a, end with bc and have any 
characters in between.  

2

ls a?bc  
a?bc  matches all filenames that start with a, end with bc and have only 
ONE character in between.  

3

ls [ic]???  
[ic]???  matches any filename that starts with either a i or c followed by 
any other three letters.  

4

ls [^ic]???  
Same as the previous command but instead of any file that starts with i or 
c  match any file that DOESN'T start with i or c.  



85321, Systems Administration Chapter 6: The Shell 

David Jones (20.01.00) Page 149 

Exercises 

6.2. Given the following files in your current directory:  
$ ls  
feb86 jan12.89  
jan19.89 jan26.89 
jan5.89 jan85 jan86 jan87 
jan88 mar88 memo1 memo10 
memo2 memo2.sv 
 

What would be the output from the following commands?  
echo *  
echo *[^0-9]   
echo m[a-df-z]*  
echo [A-Z]*   
echo jan*  
echo *.*   
echo ?????   
echo *89   
echo jan?? feb?? mar??   
echo [fjm][ae][bnr]   

Removing special meaning 
There will be times when you won’t want to use the shell special characters as 
shell special characters.  For example, what happens if you really do want to 
display 

hello        there my friend   

How do you do it?  

It's for circumstances like this that the shell provides shell special characters 
called quotes. The quote characters ’ " \ tell the shell to ignore the meaning 
of any shell special character.  

To display the above you could use the command 

echo ’hello        there my friend’ 

The first quote character ’ tells the shell to ignore the meaning of any special 
character between it and the next ’. In this case it will ignore the meaning of 
the multiple space characters. So the echo command receives one argument 
instead of four separate arguments. The following diagram demonstrates.  

 



85321, Systems Administration Chapter 6: The Shell 

David Jones (20.01.00) Page 150 

 
F i g u r e  6 . 2  

S h e l l s ,  c o m m a n d s  a n d  q u o t e s  

Table 6.4 lists each of the shell quote characters, their names and how the 
influence the shell. 

Character Name Action 

’  single quote the shell will ignore all 
special characters contained 
within a pair of single quotes 

"  double quote the shell will ignore all 
special characters EXCEPT 
$ ‘ \  contained within a 
pair of double quotes  

\  backslash the shell ignores any special 
character immediately 
following a backslash  

T a b l e  6 . 4  
Q u o t e  c h a r a c t e r s   

Examples with quotes  

Try the following commands and observe what happens  

• echo I’m David. 

This causes an error because the ‘ quote character must be used as one of a 
pair.  Since this line doesn’t have a second ‘ character the shell continues to 
ignore all the shell special characters it sees, including the new line 
character which indicates the end of a command.   

5

echo I\’m David.   
This is the “correct” implementation of what was attempted above.  The \ 
quote character is used to remove the special meaning of the ‘ character so 
it is used as a normal character 

6 echo *  
7 echo ’*’  



85321, Systems Administration Chapter 6: The Shell 

David Jones (20.01.00) Page 151 

8

echo \*   
The previous three show two different approaches to removing the special 
meaning from a single character. 

9

echo one two three four   
:

echo ’one two three four’   
;

echo "one two three four"   
<

echo hello there \  
my name is david  
Here the \ is used to ignore the special meaning of the newline character at 
the end of the first line.  This will only work if the newline character is 
immediately after the \ character.  Remember, the \ character only 
removes the special meaning from the next character. 

=

echo files = ; ls   
>

echo files = \; ls   
Since the special meaning of the ; character is removed by the \ character 
means that the shell no longer assumes there are two commands on this 
line.  This means the ls characters are treated simply as normal 
characters, not a command which must be executed. 

Exercises 

6.3. Create files with the following names  
stars*   
-top 
hello my friend   
"goodbye"   
Now delete them.  

6.4. As was mentioned in the previous chapter the {} and ; used in the exec 
and ok actions of the find command must be quoted.  The normal way 
of doing this is to use the \ character to remove the special meaning.  
Why doesn’t the use of the single quote character work.  e.g. why the 
following command doesn’t work.  
find . -name \*.bak -ok rm ’{} ;’  

Input/output redirection  
As the name suggests input/output (I/O) redirection is about changing the 
source of input or destination of output. UNIX I/O redirection is very similar 
(in part) to MS-DOS I/O redirection (guess who stole from who).  I/O 
redirection, when combined with the UNIX philosophy of writing commands 
to perform one task, is one of the most important and useful combinations in 
UNIX. 

How it works  

All I/O on a UNIX system is achieved using files. This includes I/O to the 
screen and from a keyboard. Every process under UNIX will open a number of 



85321, Systems Administration Chapter 6: The Shell 

David Jones (20.01.00) Page 152 

different files. To keep a track of the files it has, a process maintains a file 
descriptor for every file it is using.  

File descriptors  

A file descriptor is a small, non-negative integer. When a process reads/writes 
to/from a file it passes the kernel the file descriptor and asks it to perform the 
operation. The kernel knows which file the file descriptor refers to.  

Standard file descriptors  

Whenever the shell runs a new program (that is when it creates a new process) 
it automatically opens three file descriptors for the new process. These file 
descriptors are assigned the numbers 0, 1 and 2 (numbers from then on are 
used by file descriptors the process uses). The following table summarises their 
names, number and default destination. 

 

Name File descriptor Default destination 

standard input (stdin) 0 the keyboard 

standard output (stdout) 1 the screen 

standard error (stderr) 2 the screen 

T a b l e  6 . 5  
S t a n d a r d  f i l e  d e s c r i p t o r s   

By default whenever a command asks for input it takes that input from 
standard input. Whenever it produces output it puts that output onto standard 
output and if the command generates errors then the error messages are placed 
onto standard error.  

For example, the ls command displays an error message when it can’t find the 
file it was given. 

[root@faile 85321]# ls /fred  
ls: /fred: No such file or directory 

The "No such file or directory" message is sent to standard error. 

Changing direction  

By using the special characters in the table below it is possible to tell the shell 
to change the destination for standard input, output and error.  

For example 

  cat /etc/passwd > hello 

tells the shell rather than send the contents of the /etc/passwd file to standard 
output, it should send it to a file called hello.  



85321, Systems Administration Chapter 6: The Shell 

David Jones (20.01.00) Page 153 

 

Character(s) Result 

Command < file Take standard input from file  

Command > file Place output of command into file . 
Overwrite anything already in the file.  

Command >> file Append the output of command into file .  

command << label Take standard input for command from the 
following lines until a line that contains 
label  by itself  

‘command‘  execute command and replace ‘command‘ 
with the output of the command  

command1 | command2 pass the output of command1 to the input of 
command2  

command1 2> file redirect standard error of command1 to 
file .  The 2 can actually be replaced by 
any number which represents a file 
descriptor 

command1 >& file_descriptor redirect output of command1 to a 
file_descriptor  (the actual number for 
the file descriptor) 

T a b l e  6 . 6  
I / O  r e d i r e c t i o n  c o n s t r u c t s   

Using standard I/O  

Not all commands use standard input and standard output. For example the cd 
command doesn’t take any input and doesn’t produce any output. It simply 
takes the name of a directory as an argument and changes to that directory. It 
does however use standard error if it can’t change into the directory.  

It doesn’t make sense to redirect the I/O of some commands  
For example, the cp command doesn’t produce any output.  It may produce 
errors if it cannot copy the requested file but otherwise there is no output.  So 

cp /etc/passwd /tmp/passwd > output.dat 

does not make sense. 

Filters  

On the other hand some commands will always take their input from standard 
input and put their output onto standard output. All of the filters discussed 
earlier in the textbook act this way.  

As an example lets take the cat command mentioned previously. If you 
execute the cat command without supplying it with any parameters it will take 
its input from standard input and place its output onto standard output.  



85321, Systems Administration Chapter 6: The Shell 

David Jones (20.01.00) Page 154 

Try it. Execute the command cat with no arguments. Hit CTRL-D, on a line by 
itself,to signal the end of input. You should find that cat echoes back to the 
screen every line you type.  

Try the same experiment with the other filters mentioned earlier.  

I/O redirection examples  
?

ls > the.files  
Create a file the.files  that contains the list of files in the current 
directory.  

• ls /fred 2> /dev/null  
Send any error messages to the null device (throw it away). 

@

cat the.files | more  
Same effect as the command more the.files . Display the content of the 
file the.files  one page at a time.  

A

ls /etc >> the.files  
Add the list of files in from the /etc directory onto the end of the file 
the.files .  

B

echo number of lines in the.files = ‘wc -l the.files‘  
Execute the command wc -l the.files . Replace it with its output and 
then execute the echo command. Will display output similar to number of 
lines in the.files = 66   

C

cat << finished > input  
Ask the user to type in information until they enter a line with just 
finished  on it. Then copy all the information entered by the user into the 
file called input   

D

cd /etc > output.file  
Create an empty file called output.file . The cd command generates no 
output so redirecting its output creates an empty file.  

E

ls | cd  
An error message. cd doesn’t accept input so when the shell tries to send 
the output of the ls command to the cd command it doesn’t work.  

F

echo ‘wc -l /etc/passwd‘  
Execute the wc command and pass its output to the echo command as 
arguments.  



85321, Systems Administration Chapter 6: The Shell 

David Jones (20.01.00) Page 155 

Redirecting standard error  

There will be times where you wish to either throw standard error away, join 
standard error and standard output, or just view standard error. This section 
provides examples of how this can be accomplished using I/O redirection. 

• the file xx doesn’t exist display an error message on standard error 

$ ls xx  
/bin/ls: xx: No such file or directory  

• redirect standard output to the file errors, no change 

$ ls xx > errors  
/bin/ls: xx: No such file or directory 

• redirect standard error to the file errors nothing on the screen    

$ ls xx 2> errors    

• file chap1.ps  does exist so we get output but the errors still go to the file 

$ ls chap1.ps xx 2> errors  
chap1.ps     

• try to send both stdout and stderr to the errors file, but stdout doesn’t go 

$ ls chap1.ps xx >& 2 2> errors  
chap1.ps   

• try a different order and it does work, why?   

$ ls chap1.ps xx 2> errors >& 2  

Evaluating from left to right 

The shell evaluates arguments from left to right, that is it works with each 
argument starting with those from the left. This can influence how you might 
want to use the I/O redirection special characters. 

For example 

An example of why this is important is when you want to send both standard 
output and standard error of a command to the same file. 

Lets say we are attempting to view the attributes of the two files chap1.ps 
and xx.  The idea is that the file xx does not exist so the ls command will 
generate an error when it can’t find the file.  Both the error and the file 
attributes of the chap1.ps file are meant to be sent to a file called errors.  
So we try to use 

• 2>&1 
This should redirect file descriptor 2 to standard output (refer back to Table 
6.6).  It should make standard error (file descriptor 2) go to the same place 
as standard output (file descriptor 1) 

• > output.and.errors 
This sends standard output to the file output.and.errors  (we hope). 

Lets try and find out. 



85321, Systems Administration Chapter 6: The Shell 

David Jones (20.01.00) Page 156 

$ ls -l chap1.ps xx 2>&1  > output.and.errors  
ls: xx: No such file or directory 
[david@faile tmp]$ cat output.and.errors  
-rw-rw-r--   1 david    david           0 Jan  9 16:23 chap1.ps 

As you can see it doesn’t work.  The error message still appears on the screen 
and doesn’t get sent to the output.and.errors file. 

Can you explain why? 

The reason it doesn’t work is that the shell evaluates the arguments of this 
command from left to right.  The order of evaluation goes like this 

• ls 
The first argument tells the shell what command should be executed. 

• -l 
The shell won’t recognise any special characters in this argument so it will 
pass it on directly to the command. 

• chap1.ps 
Again the shell won’t see any shell special characters and so passes this 
argument directly onto the command. 

• xx 
Same again. 

• 2>&1 
Now some action.  The shell recognises some special characters here.  It 
knows that >& are I/O redirection characters.  These characters tell the 
shell that it should redirect standard error for this command to the same 
place as standard output.   The current location for standard output  is the 
terminal (the screen).  So standard error is redirected to the terminal.  No 
change from normal. 

• > 
Again the shell will see a shell special character.  In this case, the shell 
knows that standard output should be redirected to the location specified in 
the next argument. 

• output.and.errors 
This is where the shell will send the standard error of the command, a file 
called output.and.errors. 

The outcome of this is that standard output still goes to the terminal and 
standard error goes to the file output.and.errors. 

What we wanted is for both standard output and standard error to go to the file.  
The problem is the order in which the shell evaluated the arguments.  The 
solution is to switch the I/O redirection shell characters. 

[david@faile tmp]$ ls -l chap1.ps xx > output.and.errors 2>&1  
[david@faile tmp]$ cat output.and.errors  
ls: xx: No such file or directory 
-rw-rw-r--   1 david    david           0 Jan  9 16:23 chap1.ps 



85321, Systems Administration Chapter 6: The Shell 

David Jones (20.01.00) Page 157 

Changing the order means that standard output is redirected to the file 
output.and.errors FIRST and then standard error is redirected to where 
standard output is pointing (the same file). 

Everything is a file  
One of the features of the UNIX operating system is that almost everything can 
be treated as a file. This combined with I/O redirection allows you to achieve 
some powerful and interesting results.  

You’ve already seen that by default stdin is the keyboard and stdout is the 
screen of your terminal. The UNIX operating system treats these devices as 
files (remember the shell sets up file descriptors for standard input/output). But 
which file is used?  

tty   

The tty  command is used to display the filename of the terminal you are 
using. 

$ tty  
/dev/ttyp1    

In the above example my terminal is accessed through the file /dev/ttyp1. 
This means if I execute the following command  

cat /etc/passwd > /dev/ttyp1  

standard output will be redirected to /dev/ttyp1 which is where it would’ve 
gone anyway.  

 

Exercises 

6.5. What would the following command do? 
ls > ‘tty‘ 

Device files  

/dev/ttyp1  is an example of a device file. A device file is a interface to one 
of the kernel’s device drivers. A device driver is a part of the Linux kernel. It 
knows how to talk to a specific hardware device and presents a standard 
programming interface that is used by software.  

When you redirect I/O to/from a device file the information is passed through 
the device file, to the device driver and eventually to the hardware device or 
peripheral. In the previous example the contents of the /etc/passwd file were 
sent through the device file /dev/ttyp1 , to a device driver.  The device driver 
then displayed it on an appropriate device.  
/dev   

All of the system’s device files will be stored under the directory /dev. A 
standard Linux system is likely to have over 600 different device files. The 
following table summarises some of the device files.  



85321, Systems Administration Chapter 6: The Shell 

David Jones (20.01.00) Page 158 

 

filename purpose filename purpose 

/dev/hda The first IDE disk 
drive  

/dev/hda1 the first partition on 
the first IDE disk 
drive  

/dev/sda The first SCSI disk 
drive  

/dev/sda1 the first partition on 
the first SCSI drive  

/dev/audio Sound card  /dev/cdrom CD-ROM drive  

/dev/fd0 First floppy drive  /dev/ttyS1 the second serial port  

T a b l e  6 . 7  
E x a m p l e  d e v i c e  f i l e s   

Redirecting I/O to device files  

As you’ve seen it is possible to send output or obtain input from a device file. 
That particular example was fairly boring, here’s another. 

cat beam.au > /dev/audio  

This one sends a sound file to the audio device. The result (if you have a sound 
card) is that the sound is played.  

When not to  

If you examine the file permissions of the device file /dev/hda1 you’ll find 
that only the root  user and the group disk can write to that file. You should 
not be able to redirect I/O to/from that device file (unless you are the root 
user).  

If you could it would corrupt the information on the hard-drive. There are other 
device files that you should not experiment with. These other device file 
should also be protected with appropriate file permissions.  

/dev/null   

/dev/null  is the UNIX "garbage bin". Any output redirected to /dev/null is 
thrown away. Any input redirected from /dev/null  is empty. /dev/null  can 
be used to throw away output or create an empty file.  

cat /etc/passwd > /dev/null 
cat > newfile < /dev/null 

The last command is one way of creating an empty file.  

Exercises 
 

6.6. Using I/O redirection how would you perform the following tasks  
- display the first field of the /etc/passwd  file sorted in descending 
order  
- find the number of lines in the /etc/passwd file that contain the word 
bash   



85321, Systems Administration Chapter 6: The Shell 

David Jones (20.01.00) Page 159 

Shell var iables  
The shell provides a variable mechanism where you can store information for 
future use. Shell variables are used for two main purposes: shell programming 
and environment control.  This section provides an introduction to shell 
variables and their use in environment control.  A later chapter discusses shell 
programming in more detail. 

Environment control  

Whenever you run a shell it creates an environment. This environment includes 
pre-defined shell variables used to store special values including  

G the format of the prompt the shell will present to you  
H your current path  
I your home directory  
J the type of terminal you are using  
K and a great deal more.  

Any shell variable you create will be stored within this environment.   A later 
section in this chapter goes into more detail about environment control. 

The set  command  

The set  command can be used to view you shell’s environment. By executing 
the set  command without any parameters it will display all the shell variables 
currently within your shell’s environment.  

Using shell var iables  
There are two main operations performed with shell variables  

L assign a variable a value  
M use a variable’s value  

Assigning a value  

Assigning value to a shell variable is much the same as in any programming 
language variable_name=value. 

my_variable=hello 
theNum=5 
myName="David Jones"  

A shell variable can be assigned just about any value, though there are a few 
guidelines to keep in mind.  

A space is a shell special character. If you want your shell variable to contain a 
space you must tell the shell to ignore the space’s special meaning. In the 
above example I’ve used the double quotes. For the same reason there should 
never be any spaces around the = symbol.  



85321, Systems Administration Chapter 6: The Shell 

David Jones (20.01.00) Page 160 

Accessing a variable’s value  

To access a shell variable’s value we use the $ symbol. The $ is a shell special 
character that indicates to the shell that it should replace a variable with its 
value.  

For example  

dinbig$ myName="David Jones"  
dinbig$ echo My name is $myName  
My name is David Jones  
dinbig$ command=ls  
dinbig$ $command 
Mail ethics.txt papers    
dinbig$ echo A$empty:  
A:     

Uninitialised variables  

The last command in the above example demonstrates what the value of a 
variable is when you haven’t initialised it. The last command tries to access the 
value for the variable empty.  

But because the variable empty has never been initialised it is totally empty. 
Notice that the result of the command has nothing between the A and the :.  

Resetting a variable  

It is possible to reset the value of a variable as follows 

myName=  

This is totally different from trying this 

myName=’ ’  

This example sets the value of myName to a space character NOT nothing.  

The readonly  command  

As you might assume the readonly command is used to make a shell variable 
readonly. Once you execute a command like 

readonly my_variable  

The shell variable my_variable  can no longer be modified.  
To get a list of the shell variables that are currently set to read only you run the 
readonly  command without any parameters.  

The unset  command  

Previously you’ve been shown that to reset a shell variable to nothing as 
follows 

variable=  



85321, Systems Administration Chapter 6: The Shell 

David Jones (20.01.00) Page 161 

But what happens if you want to remove a shell variable from the current 
environment? This is where the unset command comes in. The command 

unset variable  

Will remove a variable completely from the current environment.  

There are some restrictions on the unset command. You cannot use unset on 
a read only variable or on the pre-defined variables IFS, PATH, PS1, PS2  

Arithmetic  

UNIX shells do not support any notion of numeric data types such as integer or 
real. All shell variables are strings. How then do you perform arithmetic with 
shell variables? 

One attempt might be 

dinbig:~$ count=1  
dinbig:~$ Rcount=$count+1   

But it won’t work. Think about what happens in the second line. The shell sees 
$count  and replaces it with the value of that variable so we get the command 
count=1+1 . Since the shell has no notion of an integer data type the variable 
count  now takes on the value 1+1 (just a string of characters).  

The expr  command  

The UNIX command expr is used to evaluate expressions. In particular it can 
be used to evaluate integer expressions. For example 

dinbig:~$ expr 5 + 6  
11 
dinbig:~$ expr 10 / 5  
2 
dinbig:~$ expr 5 \* 10  
50 
dinbig:~$ expr 5 + 6 * 10  
expr: syntax error 
dinbig:~$ expr 5 + 6 \* 10  
65  

Note that the shell special character * has to be quoted. If it isn’t the shell will 
replace it with the list of all the files in the current directory which results in 
expr  generating a syntax error.  

Using expr   

By combining the expr command with the grave character ‘ we have a 
mechanism for performing arithmetic on shell variables. For example 

count=1 
count=‘expr $count + 1‘  

expr  restrictions  

The expr  command only works with integer arithmetic. If you need to perform 
floating point arithmetic have a look at the bc and awk commands.  



85321, Systems Administration Chapter 6: The Shell 

David Jones (20.01.00) Page 162 

The expr  command accepts a list of parameters and then attempts to evaluate 
the expression they form. As with all UNIX commands the parameters for the 
expr  command must be separated by spaces. If you don’t expr interprets the 
input as a sequence of characters. 

dinbig:~$ expr 5+6  
5+6 
dinbig:~$ expr 5+6 \* 10  
expr: non-numeric argument      

Alternatives to expr for arithmetic 

The expr command is the traditional approach for perform arithmetic but it is 
by no means the best and has at least two major draw backs including 

• it doesn’t handle decimal points 
If you want to add 5.5 and 6.5 you can’t do it with expr. 
One solution to this is the bc command 

[david@faile tmp]$ echo 5.5 + 5 | bc  
10.5 

• every use requires the creation of a new process 
Chapter 5 includes a discussion of why this can be a problem and cause 
shell scripts to be very slow. 
An alternative to this is to use the arithemetic capabilities provided by 
many of the modern shells including bash.  This is what is used in the add2 
script mentioned in the previous chapter. 

[david@faile tmp]$ echo $[ 5 + 5]  
10 

Valid var iable names  
Most programming languages have rules that restrict the format of variable 
names. For the Bourne shell, variable names must  

• start with either a letter or an underscore character,  

• followed by zero or more letters, numbers or underscores  

{}  

In some cases you will wish to use the value of a shell variable as part of a 
larger word. Curly braces { } are used to separate the variable name from the 
rest of the word.  

For example  

You want to copy the file /etc/passwd  into the directory /home/david . The 
following shell variables have been defined. 

directory=/etc/ 
home=/home/david  

A first attempt might be 



85321, Systems Administration Chapter 6: The Shell 

David Jones (20.01.00) Page 163 

cp $directorypasswd $home  

This won’t work because the shell is looking for the shell variable called 
directorypasswd  (there isn’t one) instead of the variable directory.  

The correct solution would be to surround the variable name directory with 
curly braces. This indicates to the shell where the variable stops. 

cp ${directory}passwd $home  

Environment control  
Whenever you run a shell it creates an environment in which it runs. This 
environment specifies various things about how the shell looks, feels and 
operates. To achieve this the shell uses a number of pre-defined shell variables. 
Table 6.8 summarises these special shell variables.  

Variable name Purpose 

HOME your home directory  

SHELL the executable program for the shell you are 
using  

UID your user id  

USER your username  

TERM the type of terminal you are using  

DISPLAY your X-Windows display  

PATH your executable path  

T a b l e  6 . 8  
E n v i r o n m e n t  v a r i a b l e s   

PS1 and PS2  

The shell variables PS1 and PS2 are used to store the value of your command 
prompt. Changing the values of PS1 and PS2 will change what your command 
prompt looks like.  

dinbig:~$ echo :$PS1: and :$PS2:  
:\h:\w\$ : and :> :  

PS2 is the secondary command prompt. It is used when a single command is 
spread over multiple lines. You can change the values of PS1 and PS2 just like 
you can any other shell variable.  

bash  extensions  

You’ll notice that the value of PS1 above is \h:\w\$  but my command prompt 
looks like dinbig:~$ .  

This is because the bash shell provides a number of extra facilities. One of 
those facilities is that it allows the command prompt to contain the hostname 
\h (the name of my machine) and the current working directory \w.  



85321, Systems Administration Chapter 6: The Shell 

David Jones (20.01.00) Page 164 

With older shells it was not possible to get the command prompt to display the 
current working directory.  

Exercises 

6.7. Many first time users of older shells attempt to get the command prompt 
to contain the current directory by trying this 
PS1=‘pwd‘ 
The pwd command displays the current working directory. Explain why 
this will not work.  (HINT: When is the pwd command executed?) 

Var iables and sub-shells  
Every time you start a new shell, the new shell will create a new environment 
separate from its parent’s environment. The new shell will not be able to access 
or modify the environment of its parent shell.  

For example  

Here’s a simple example.  
dinbig:~$ myName=david   create a shell variable  

dinbig:~$ echo $myName  
david   

use it  

dinbig:~$ bash   start a new shell  

dinbig:~$ echo my name is $myName  
my name is   

try to use the parent shell’s variable  

dinbig:~$ exit   exit from the new shell and return to the 
parent  

dinbig:~$ echo $myName  
david   

use the variable again  

 

As you can see a new shell cannot access or modify the shell variables of its 
parent shells.  

export   

There are times when you may wish a child or sub-shell to know about a shell 
variable from the parent shell. For this purpose you use the export command.  
For example, 

dinbig:~$ myName=David Jones 
dinbig:~$ bash 
dinbig:~$ echo my name is $myName 
my name is 
dinbig:~$ logout  
dinbig:~$ export myName  
dinbig:~$ bash  
dinbig:~$ echo my name is $myName  
my name is david 
dinbig:~$ exit     



85321, Systems Administration Chapter 6: The Shell 

David Jones (20.01.00) Page 165 

Local variables  

When you export a variable to a child shell the child shell creates a local copy 
of the variable. Any modification to this local variable cannot be seen by the 
parent process.  

There is no way in which a child shell can modify a shell variable of a parent 
process. The export command only passes shell variables to child shells. It 
cannot be used to pass a shell variable from a child shell back to the parent.  

For example  

dinbig:~$ echo my name is $myName  
my name is david 
dinbig:~$ export myName  
dinbig:~$ bash  
dinbig:~$ myName=fred      # child shell modifies variable 
dinbig:~$ exit  
dinbig:~$ echo my name is $myName    
my name is david 
# there is no change in the parent  

Advanced var iable substitution  
The shell provides a number of additional more complex constructs associated 
with variable substitution. The following table summarises them.  

Construct Purpose 

${ variable:- value}   replace this construct with the variable’s value if it has 
one, if it doesn’t, use value but don’t make variable 
equal to value  

${ variable:= value}   same as the above but if variable has no value 
assign it value  

${ variable:? message}   replace the construct with the value of the variable if 
it has one, if it doesn’t then display message onto 
stderr if message is null then display prog: 
variable: parameter null or not set  on stderr  

${ variable:+ value}   if variable  has a value replace it with value 
otherwise do nothing  

T a b l e  6 . 9  
A d v a n c e d  v a r i a b l e  s u b s t i t u t i o n   

For example  

dinbig:~$ myName= 
dinbig:~$ echo my name is $myName 
my name is 
dinbig:~$ echo my name is ${myName:-"NO NAME"} 
my name is NO NAME 
dinbig:~$ echo my name is $myName  
my name is 
dinbig:~$ echo my name is ${myName:="NO NAME"}  
my name is NO NAME 
dinbig:~$ echo my name is $myName  



85321, Systems Administration Chapter 6: The Shell 

David Jones (20.01.00) Page 166 

my name is NO NAME    
dinbig:~$ herName=  
dinbig:~$ echo her name is ${herName:?"she hasn’t got a name"}  
bash: herName: she hasn’t got a name 
dinbig:~$ echo her name is ${herName:?}  
bash: herName: parameter null or not set     

Evaluation order   
In this chapter we’ve looked at the steps the shell performs between getting the 
user’s input and executing the command. The steps include  

• I/O redirection  
Where the shell changes the direction in which I/O is being sent. 

• variable substitution  
The shell replaces shell variables with the corresponding values. 

• filename substitution  
This is where the shell replaces globbing characters with matching 
filenames. 

An important question is in what order does the shell perform these steps?  

Why order is important  

Look at the following example 

dinbig:~$ pipe=\|  
dinbig:~$ echo $pipe  
| 
dinbig:~$ star=\*  
dinbig:~$ echo $star  
Mail News README VMSpec.ps.bak acm.bhx acm2.dot   

In the case of the echo $start  command the shell has seen $star and 
replaced it with its value *. The shell sees the * and replaces it with the list of 
the files in the current directory.  

In the case of the echo $pipe command the shell sees $pipe and replaces it 
with its value |. It then displays | onto the screen.  

Why didn’t it treat the | as a special character?  If it had then echo | would’ve 
produced something like the following. 

[david@faile tmp]$ echo |  
>  

The >, produced by the shell not typed in by the user,  indicates that the shell is 
still waiting for input.  The shell is still expecting another command name. 

The reason this isn’t produced in the previous example is related to the order in 
which the shell performs its analysis of shell special variables.  

The order  

The order in which the shell performs the steps is  

• I/O redirection  



85321, Systems Administration Chapter 6: The Shell 

David Jones (20.01.00) Page 167 

• variable substitution  

• filename substitution  

For the command  

echo $PIPE  

the shell performs the following steps  

• check for any I/O redirection characters, there aren’t any, the command line 
is currently echo $PIPE   

• check for variables, there is one $PIPE, replace it with its value, the 
command line is now echo |  

• check for any wildcards, there aren’t any  

So it now executes the command echo |.  

If you do the same walk through for the echo $star command you should see 
how its output is achieved.  

The eval command  
What happens if I want to execute the following command 

ls $pipe more  

using the shell variable pipe from the example above?  

The intention is that the pipe shell variable should be replaced by its value | 
and that the | be used to redirect the output of the ls command to the more 
command.  

Due to the order in which the shell performs its evaluation this won’t work.  

Doing it twice  

The eval  command is used to evaluate the command line twice. eval is a 
built-in shell command. Take the following command (using the pipe shell 
variable from above) 

eval ls $pipe more  

The shell sees the $pipe and replaces it with its value, |. It then executes the 
eval  command.  

The eval  command repeats the shell’s analysis of its arguments. In this case it 
will see the | and perform necessary I/O redirection while running the 
commands.  

Conclusion  
The UNIX command line interface is provided by programs called shells. A 
shell’s responsibilities include  

• providing the command line interface  

• performing I/O redirection  



85321, Systems Administration Chapter 6: The Shell 

David Jones (20.01.00) Page 168 

• performing filename substitution  

• performing variable substitution  

• and providing an interpreted programming language  

A shell recognises a number of characters as having special meaning. 
Whenever it sees these special characters it performs a number of tasks that 
replace the special characters.  

When a shell is executed it creates an environment in which to run. This 
environment consists of all the shell variables created including a number of 
pre-defined shell variables that control its operation and appearance.  

Review Questions 
6.1  

What is the effect of the following command sequences?  

• ls | wc -l   

• rm ???   

• who | wc -l  

• mv progs/* /usr/steve/backup   

• ls *.c | wc -l  

• rm *.o   

• who | sort  

• cd ; pwd   

• cp memo1 ..  

• ls -l | sort +4n   

6.2  

What is the output of the following commands? Are there any problems? How 
would you fix it?  

• echo this is a star *   

• echo ain\\\\’t you my friend  

• echo "** hello **"  

• echo "the output of the ls command is ‘ls‘"   

• echo ‘the output of the pwd command is ‘pwd‘‘   

6.3  

Which of the following are valid shell variable names?  
• XxXxXxXx  

• _  

• 12345  



85321, Systems Administration Chapter 6: The Shell 

David Jones (20.01.00) Page 169 

• HOMEDIR  

• file.name  

• _date  

• file_name  

• x0-9  

• file1  

• Slimit  

6.4  

Suppose your HOME directory is /usr/steve  and that you have sub-directory 
as shown in figure 6.3.  

Assuming you just logged onto the system and executed the following 
commands:  
docs=/usr/steve/documents 
let=$docs/letters 
prop=$docs/proposals 

write commands to do the following using these variables  

• List the contents of the documents directory  

• Copy all files from the letters  directory to the proposals  directory  

• Move all files with names that contain a capital letter from the letters 
directory to the current directory.  

• Count the number of files in the memos directory.  

What would be the effect of the following commands?  
• ls $let/..  

• cat $prop/sys.A >> $let/no.JSK  

• echo $let/*  

• cp $let/no.JSK $prop  

• cd $prop  

• files_in_prop=‘echo $prop*‘  

• cat ‘echo $let\*‘   

 



85321, Systems Administration Chapter 6: The Shell 

David Jones (20.01.00) Page 170 

F i g u r e  6 . 3  
R e v i e w  Q u e s t i o n  6 . 4  

 



85321, Systems Administration Chapter 7: Text Manipulation 

David Jones (20.01.00) Page 171 

Chapter 
Text Manipulation 

Introduction  
Many of the tasks a Systems Administrator will perform involve the 
manipulation of textual information.  Some examples include manipulating 
system log files to generate reports and modifying shell programs.  
Manipulating textual information is something which UNIX is quite good at 
and provides a number of tools which make tasks like this quite simple, once 
you understand how to use the tools.  The aim of this chapter is to provide you 
with an understanding of these tools 

By the end of this chapter you should be  

• familiar with using regular expressions,  

• able to use regular expressions and ex commands to perform powerful text 
manipulation tasks. 

• Online lecture 7 on the 85321 Website/CD-ROM provides some alternative 
discussion of the topics covered in this chapter.  It may be beneficial to 
follow that lecture in conjunction with reading this chapter. 

Regular  expressions  
Regular expressions provide a powerful method for matching patterns of 
characters. Regular expressions (REs) are understood by a number of 
commands including ed ex sed awk grep egrep, expr  and even vi.  
Some examples of regular expressions look like include 

• david  
Will match any occurrence of the word david  

• [Dd]avid  
Will match either david  or David   

• .avid  
Will match any letter (. ) followed by avid   

• ^david$  
Will match any line that contains only david  

• d*avid  
Will match avid , david , ddavid  dddavid  and any other word with 
repeated ds followed by avid   

• ^[^abcef]avid$  
Will match any line with only five characters on the line, where the last 



85321, Systems Administration Chapter 7: Text Manipulation 

David Jones (20.01.00) Page 172 

four characters must be avid and the first character can be any character 
except abcef .  

Each regular expression is a pattern, it matches a collection of characters.  That 
means by itself the regular expression can do nothing.  It has to be combined 
with some UNIX commands which understand regular expressions.  The 
simplest example of how regular expressions are used by commands is the 
grep command. 

The grep  command was introduced in a previous chapter and is used to search 
through a file and find lines that contain particular patterns of characters.  Once 
it finds such a line, by default, the grep command will display that line onto 
standard output. In that previous chapter you were told that grep stood for 
global regular expression pattern match. Hopefully you now have some idea of 
where the  regular expression part comes in. 

This means that the patterns that grep searches for are regular expressions.  

The following are some example command lines making use of the grep 
command and regular expressions  
• grep unix tmp.doc   

find any lines contain unix 

• grep ’[Uu]nix’ tmp.doc  
find any lines containing either unix or Unix . Notice that the regular 
expression must be quoted. This is to prevent the shell from treating the [] 
as shell special characters and performing file name substitution.  

• grep ’[^aeiouAEIOU]*’ tmp.doc  
Match any number of characters that do not contain a vowel.  

• grep ’^abc$’ tmp.doc  
Match any line that contains only abc.  

• grep ’hel.’ tmp.doc  
Match hel  followed by any other character.  

Other UNIX commands which use regular expressions include sed, ex and vi.  
Which are editors (different types of editors) which allow the use of regular 
expressions to search and to search and replace patterns of characters.  Much 
of the power of the Perl script language and the awk command can also be 
traced back to regular expressions. 

You will also find that the use of regular expressions on other platforms (i.e. 
Microsoft) is increasing as the benefits of REs become apparent. 

REs versus filename substitution  

It is important that you realise that regular expressions are different from 
filename substitution.  If you look in the previous examples using grep you 
will see that the regular expressions are sometimes quoted.  One example of 
this is the command 

grep ’[^aeiouAEIOU]*’ tmp.doc 



85321, Systems Administration Chapter 7: Text Manipulation 

David Jones (20.01.00) Page 173 

Remember that [^] and * are all shell special characters.  If the quote 
characters (’’) were not there the shell would perform filename substitution 
and replace these special characters with matching filenames. 

For example, if I execute the above command without the quote characters in 
one of the directories on my Linux machine the following happens 

[david@faile tmp]$ grep [^aeiouAEIOU]* tmp.doc 
tmp.doc:chap1.ps this is the line to match 

The output here indicates that grep found one line in the file tmp.doc which 
contained the regular expression pattern it wanted and it has displayed that 
line.  However this output is wrong. 

Remember, before the command is executed the shell will look for and modify 
any shell special characters it can find.  In this command line the shell will find 
the regular expression because it contains special characters.  It replaces the 
[^aeiouAEIOU]* with all the files in the current directory which don’t start 
with a vowel (aeiouAEIOU). 

The following sequence shows what is going on.  First the ls command is used 
to find out what files are in the current directory.  The echo command is then 
used to discover which filenames will be matched by the regular expression.  
You will notice how the file anna is not selected (it starts with an a). 

The grep command then shows how when you replace the attempted regular 
expression with what the shell will do you get the same output as the grep 
command above with the regular expression. 

[david@faile tmp]$ ls  
anna  chap1.ps magic  tmp  tmp.doc 
[david@faile tmp]$ echo [^aeiouAEIOU]*   
chap1.ps magic tmp tmp.doc 
[david@faile tmp]$ grep chap1.ps magic tmp tmp.doc  
tmp.doc:chap1.ps this is the line to match 

In this example command we do not want this to happen.  We want the shell to 
ignore these special characters and pass them to the grep command.  The grep 
command understands regular expressions and will treat them as such.  The 
output of the proper command on my system is 

[david@faile tmp]$ grep ’[^aeiouAEIOU]*’ tmp.doc  
This is atest 
chap1.ps this is the line to match 
 

Regular expressions have nothing to do with filename substitution, they are in 
fact completely different. Table 7.1 highlights the differences between regular 
expressions and filename substitution.  

Filename substitution Regular expressions 

Performed by the shell Performed by individual commands  

used to match filenames Used to match patterns of characters in 
data files  

T a b l e  7 . 1  
R e g u l a r  e x p r e s s i o n s  v e r s u s  f i l e n a m e  s u b s t i t u t i o n   



85321, Systems Administration Chapter 7: Text Manipulation 

David Jones (20.01.00) Page 174 

How they work 

Regular expressions use a number of special characters to match patterns of 
characters. Table 7.2 outlines these special characters and the patterns they 
match.  

 

Character Matches 

c if c  is any character other than \ [ . * ^ ] $ 
then it will match a single occurrence of 
that character  

\ remove the special meaning from the 
following character  

. any one character  

^ the start of a line  

$ the end of a line  

* 0 or more matches of the previous RE  

[ chars] any one character in chars a list of 
characters  

[^ chars] any one character NOT in chars a list of 
characters  

T a b l e  7 . 2  
R e g u l a r  e x p r e s s i o n  c h a r a c t e r s   

Exercises 

7.4. What will the following simple regular expressions match? 
     fred 
  [^D]aily 
  ..^end$ 
  he..o 
  he\.\.o 
  \$fred 
  $fred 

Repetition 
There are times when you wish to repeat a previous regular expression.  For 
example, I want to match 40 letter a’s.  One approach would be to write 

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa 

Another would be to use one of the repetition characters from Table 7.3. 

a\{40,40\} 



85321, Systems Administration Chapter 7: Text Manipulation 

David Jones (20.01.00) Page 175 

 

Construct Purpose 

+ match one or more occurrences of the 
previous RE  

? match zero or one occurrences of the 
previous RE  

\{ n\} match exactly n occurrences of the previous 
RE  

\{ n,\} match at least n occurrences of the previous 
RE  

\{ n, m\} match between n and m occurrences of the 
previous RE  

T a b l e  7 . 3  
R e g u l a r  e x p r e s s i o n  r e p e t i t i o n  c h a r a c t e r s  

Each of the repetition characters in the previous table will repeat the previous 
regular expression.  For example, 

• d+ 
Match one or more d’s 

• fred?  
Match fre followed by 0 or more d’s. NOT 0 or more repetitions of fred. 

• .\{5,\}  
Does not match 5 or more repeats of the same character (e.g. aaaaa).  
Instead it matches at least 5 or more repeats of any single character. 

This last example is an important one.  The repetition characters match the 
previous regular expression and NOT what the regular expression matches.  
The following commands show the distinction 

[david@faile tmp]$ cat pattern  
aaaaaaaaaaa 
david 
dawn 
[david@faile tmp]$ grep ’.\{5,\}’ pattern  
aaaaaaaaaaa 
david 

First step is to show the contents of the file pattern, three lines of text, one with 
a row of a’s, another with the name david and another with the name dawn.  If 
the regular expression .\{5,\}  is meant to match at least 5 occurrences of the 
same character it should only match the line with all a’s.  However, as you can 
see it also matches the line containing david.   

The reason for this is that .\{5,\}  will match any line with at least 5 single 
characters.  So it does mention the line with the name david but doesn’t match 
the line with the name dawn.  That last line isn’t matched because it only 
contains 4 characters. 



85321, Systems Administration Chapter 7: Text Manipulation 

David Jones (20.01.00) Page 176 

Concatenation and Alternation 
It is quite common to concatenate regular expressions one after the other.  In 
this situation any string which the regular expression matches will match the 
entire regular expression.  Alternation, choosing between two or regular 
expressions is done using the | character.  For example, 

N

egrep ’(a|b)’ pattern  
Match any line that contains either an a or a b  

Different commands, different REs  
Regular expressions are one area in which the heterogeneous nature of UNIX 
becomes apparent.  Different programs on different platforms recognise 
different subsets of regular expressions.  You need to refer to the manual page 
of the various commands to find out which features it supports.  On Linux you 
can also check the regex(7) manual page for more details about the POSIX 
1003.2 regular expressions supported by most of the GNU commands used by 
Linux. 

One example of the difference, using the pattern file used above,  follows 

[david@faile tmp]$ grep ’.\{2,\}’ pattern  
aaaaaaaaaaa 
david 
[david@faile tmp]$ egrep ’.\{2,\}’ pattern 

This demonstrates how the grep and egrep commands on Linux use slightly 
different versions of regular expressions. 

Exercises 

7.5. Write grep commands that use REs to carry out the following.  
1.  Find any line starting with j in the file /etc/passwd  (equivalent to 
asking  
     to find any username that starts with j). 
2.  Find any user that has a username that starts with j and uses bash as  
     their login shell (if they use bash their entry in /etc/passwd  will 
end with  
     the full path for the bash program). 
3.  Find any user that belongs to a group with a group ID between 0 and 
99  
     (group id is the fourth field on each line in /etc/passwd). 

Tagging  
Tagging is an extension to regular expressions which allows you to recognise a 
particular pattern and store it away for future use. For example, consider the 
regular expression 

da\(vid\)  



85321, Systems Administration Chapter 7: Text Manipulation 

David Jones (20.01.00) Page 177 

The portion of the RE surrounded by the \( and \)  is being tagged. Any 
pattern of characters that matches the tagged RE, in this case vid, will be 
stored in a register. The commands that support tagging provide a number of 
registers in which character patterns can be stored.  

It is possible to use the contents of a register in a RE. For example, 

\(abc\)\1\1  

The first part of this RE defines the pattern that will be tagged and placed into 
the first register (remember this pattern can be any regular expression).  In this 
case the first register will contain abc. The 2 following \1 will be replaced by 
the contents of register number 1. So this particular example will match 
abcabcabc .  

The \ characters must be used to remove the other meaning which the brackets 
and numbers have in a regular expression.  

For example  

Some example REs using tagging include  

• \(david\)\1  
This RE will match daviddavid . It first matches david and stores it into 
the first register (\(david\) ). It then matches the contents of the first 
register (\1 ).  

• \(.\)oo\1  
Will match words such as noon, moom.  

For the remaining RE examples and exercises I’ll be referring to a file called 
pattern . The following is the contents of pattern. 

a 
hellohello 
goodbye 
friend how hello 
there how are you how are you 
ab 
bb 
aaa 
lll 
Parameters 
param  

Exercises 

7.6. What will the following commands do  
grep ’\(a\)\1’ pattern   
grep ’\(.*\)\1’ pattern   
grep ’\( .*\)\1’ pattern   

ex, ed, sed and vi  
So far you'’ve been introduced to what regular expressions do and how they 
work.  In this section you will be introduced to some of the commands which 
allow you to use regular expressions to achieve some quite powerful results. 



85321, Systems Administration Chapter 7: Text Manipulation 

David Jones (20.01.00) Page 178 

In the days of yore UNIX did not have full screen editors. Instead the users of 
the day used the line editor ed. ed was the first UNIX editor and its impact can 
be seen in commands such as sed, awk, grep  and a collection of editors 
including ex and vi .  

vi  was written by Bill Joy while he was a graduate student at the University of 
California at Berkeley (a University responsible for many UNIX innovations). 
Bill went on to do other things including being involved in the creation of Sun 
Microsystems.  

vi  is actually a full-screen version of ex. Whenever you use :wq to save and 
quit out of vi  you are using a ex command.  

So??? 

All very exciting stuff but what does it mean to you a trainee Systems 
Administrator? It actually has at least three major impacts  

• by using vi you can become familiar with the ed commands 

• ed commands allow you to use regular expressions to manipulate and 
modify text 

• those same ed commands, with regular expressions, can be used with sed 
to perform all these tasks non-interactively (this means they can be 
automated). 

Why use ed?  

Why would anyone ever want to use a line editor like ed?  

Well in some instances the Systems Administrator doesn’t have a choice. There 
are circumstances where you will not be able to use a full screen editor like vi. 
In these situations a line editor like ed or ex will be your only option.  

One example of this is when you boot a Linux machine with installation boot 
and root disks. A few years ago these disks usually didn’t have space for a full 
screen editor but they did have ed.  

ed commands  

ed is a line editor that recognises a number of commands that can manipulate 
text. Both vi  and sed recognise these same commands.  In vi whenever you 
use the : command you are using ed commands. ed commands use the 
following format. 

[ address [, address]] command [parameters] 

(you should be aware that anything between [] is optional) 

This means that every ed command consists of  

• 0 or more addresses that specify which lines the command should be 
performed upon, 

• a single character command, and  

• an optional parameter (depending on the command)  



85321, Systems Administration Chapter 7: Text Manipulation 

David Jones (20.01.00) Page 179 

For example  

Some example ed commands include  

• 1,$s/old/new/g  
The address is 1,$ which specifies all lines. The command is the substitute 
command. With the following text forming the parameters to the 
command. This particular command will substitute all occurrences of the 
work old  with the word new for all lines within the current file.  

• 4d3  
The address is line 4. The command is delete. The parameter 3 specifies 
how many lines to delete. This command will delete 3 lines starting from 
line 4.  

• d 
Same command, delete but no address or parameters. The default address is 
the current line and the default number of lines to delete is one. So this 
command deletes the current line.  

• 1,10w/tmp/hello  
The address is from line 1 to line 10. The command is write to file. This 
command will write lines 1 to 10 into the file /tmp/hello   

The current line 

The ed family of editors keep track of the current line. By default any ed 
command is performed on the current line. Using the address mechanism it is 
possible to specify another line or a range of lines on which the command 
should be performed.  

Table 7.4 summarises the possible formats for ed addresses. 



85321, Systems Administration Chapter 7: Text Manipulation 

David Jones (20.01.00) Page 180 

 

Address Purpose 

. the current line  

$ the last line  

7 line 7, any number matches that line number  

a the line that has been marked as a  

/ RE/ the next line matching the RE moving forward from the 
current line  

?RE? the next line matching the RE moving backward from the 
current line  

Address+n the line that is n lines after the line specified by address 

Address- n the line that is n lines before the line specified by 
address  

Address1, address2 a range of lines from address1 to address2  

, the same as 1,$, i.e. the entire file from line 1 to the last 
line ($)  

; the same as .,$, i.e. from the current line (. ) to the last 
line ($)  

T a b l e  7 . 4  
e d  a d d r e s s e s   

ed commands  

Regular users of vi will be familiar with the ed commands w and q (write and 
quit). ed also recognises commands to delete lines of text, to replace characters 
with other characters and a number of other functions.  

Table 7.5 summarises some of the ed commands and their formats. In Table 
7.5 range can match any of the address formats outlined in Table 7.4.



85321, Systems Administration Chapter 7: Text Manipulation 

David Jones (20.01.00) Page 181 

 

Address Purpose 

linea the append command, allows the user to 
add text after line number line  

range d buffer count the delete command, delete the lines 
specified by range and count and place 
them into the buffer buffer  

range j count the join command, takes the lines 
specified by range and count and 
makes them one line  

q quit  

line r file the read command, read the contents 
of the file file and place them 
after the line line  

sh start up a new shell  

range s/ RE/ characters/ options the substitute command, find any 
characters that match RE and 
replace them with characters but 
only in the range specified by 
range  

u the undo command,  

range w file the write command, write to the file 
file all the lines specified by 
range  

T a b l e  7 . 5  
e d  c o m m a n d s   

For example  

Some more examples of ed commands include  

• 5,10s/hello/HELLO/  
replace the first occurrence of hello  with HELLO for all lines between 5 
and 10  

• 5,10s/hello/HELLO/g  
replace all occurrences of hello with HELLO for all lines between 5 and 10  

• 1,$s/^\(.\{20,20\}\)\(.*\)$/\2\1/  
for all lines in the file, take the first 20 characters and put them at the end 
of the line  



85321, Systems Administration Chapter 7: Text Manipulation 

David Jones (20.01.00) Page 182 

The last example  

The last example deserves a bit more explanation. Let’s break it down into its 
components  

• 1,$s  
The 1,$  is the range for the command. In this case it is the whole file (from 
line 1 to the last line). The command is substitute so we are going to 
replace some text with some other text.  

• /^  
The / indicates the start of the RE. The ^ is a RE pattern and it is used to 
match the start of a line (see Table 7.2).  

• \(.\{20,20\}\)  
This RE fragment .\{20,20\}  will match any 20 characters. By 
surrounding it with \( \)  those 20 characters will be stored in register 1.  

• \(.*\)$  
The .*  says match any number of characters and surrounding it with \( \) 
means those characters will be placed into the next available register 
(register 2). The $ is the RE character that matches the end of the line. So 
this fragment takes all the characters after the first 20 until the end of the 
line and places them into register 2.  

• /\2\1/  
This specifies what text should replace the characters matched by the 
previous RE. In this case the \2 and the \1 refer to registers 1 and 2. 
Remember from above that the first 20 characters on the line have been 
placed into register 1 and the remainder of the line into register 2.  

The sed command  

sed  is a non-interactive version of ed. sed  is given a sequence of ed 
commands and then performs those commands on its standard input or on files 
passes as parameters.  It is an extremely useful tool for a Systems 
Administrator.  The ed and vi commands are interactive which means they 
require a human being to perform the tasks.  On the other had sed is non-
interactive and can be used in shell programs which means tasks can be 
automated. 

sed command format  

By default the sed command acts like a filter. It takes input from standard 
input and places output onto standard output. sed can be run using a number of 
different formats.  

sed command [file-list] 
sed [-e command] [-f command_file] [filelist]    

command is one of the valid ed commands.  

The -e command option can be used to specify multiple sed commands.  For 
example, 



85321, Systems Administration Chapter 7: Text Manipulation 

David Jones (20.01.00) Page 183 

sed –e '1,$s/david/DAVID/' –e '1,$s/bash/BASH/' /etc/passwd  

The -f command_file tells sed to take its commands from the file 
command_file. That file will contain ed commands one to a line.  

For example  

Some of the tasks you might use sed for include  

• change the username DAVID in the /etc/passwd  to david   

• for any users that are currently using bash as their login shell change them 
over to the csh.  

You could also use vi or ed to perform these same tasks. Note how the / in 
/bin/bash  and /bin/csh  have been quoted. This is because the / character is 
used by the substitute command to split the text to find and the text to replace 
it with. It is necessary to quote the / character so ed will treat it as a normal 
character.  

sed 's/DAVID/david/' /etc/passwd 
sed 's/david/DAVID/' -e 's/\/bin\/bash/\/bin\/csh/' /etc/passwd    
sed -f commands /etc/passwd  

The last example assumes that there is a file called commands that contains the 
following  

s/david/DAVID/ 
s/\/bin\/bash/\/bin\/csh/  

Understanding complex commands 
When you combine regular expressions with ed commands you can get quite a 
long string of nearly incomprehensible characters.  This can be quite difficult 
especially when you are just starting out with regular expressions.  The secret 
to understanding these strings, like with many other difficult tasks, is breaking 
it down into smaller components.   

In particular, you need to learn to read the regular expression from the left to 
the right and understand each character as you go. 

For example, lets take the second substitute command from the last section 

s/\/bin\/bash/\/bin\/csh/  

We know it is an ed command so the first few characters are going to indicate 
what type of command.  Going through the characters 

• s 

The first character is an s followed by a / so that indicates a substitute 
command.  
Trouble is we don’t know what the range is because it isn’t specified.  For 
most commands there will be a default value for the range.  For the case of 
sed the default range is the current line.   

• /  
In this position it indicates the start of the string the substitute command 
will search for. 



85321, Systems Administration Chapter 7: Text Manipulation 

David Jones (20.01.00) Page 184 

• \  
We are now in the RE specifying the string to match.  The \ is going to 
remove the special meaning from the next character. 

• /  
Normally this would indicate the end of the string to match.  However, the 
previous character has removed that special meaning.  Instead we now 
know the first character we are matching a / 

• bin 

I’ve placed these together as they are normal characters.  We are now trying 
to match /bin 

• \/  
As before the \ removes the special meaning.  So we are trying to match 
/bin/ 

• bash 

Now matching /bin/bash 

• /  
No \ to remove the special meaning.  So this indicates the end of the string 
to search for and the start of the replace string. 

Hopefully you have the idea by now and complete this process.  This 
command will search for the string /bin/bash and replace it with /bin/csh 

Exercises 

7.7. Perform the following tasks with both vi and sed.  
You have just written a history of the UNIX operating system but you 
referred to UNIX as unix throughout. Replace all occurrences of unix 
with UNIX  
You’ve just written a Pascal procedure using Write instead of Writeln . 
The procedure is part of a larger program. Replace Write with Writeln  
for all lines between the next occurrence of BEGIN and the following 
END  
When you forward a mail message using the elm mail program it 
automatically adds > to the beginning of every line. Delete all 
occurrences of > that start a line.  

7.8. What do the following ed commands do?  
.+1,$d   
1,$s/OSF/Open Software Foundation/g   
1,/end/s/\([a-z]*\) \([0-9]*\)/\2 \1/   

7.9. What are the following commands trying to do?  Will they work?  If not 
why not? 
sed –e 1,$s/^:/fred:/g /etc/passwd 
sed '1,$s/david/DAVID/' '1,$s/bash/BASH/' /etc/passwd 



85321, Systems Administration Chapter 7: Text Manipulation 

David Jones (20.01.00) Page 185 

Conclusions  
Regular expressions (REs) are a powerful mechanism for matching patterns of 
characters. REs are understood by a number of commands including vi, grep , 
sed , ed, awk and Perl .  

vi  is just one of a family of editors starting with ed and including ex and sed. 
This entire family recognise ed commands that support the use of regular 
expressions to manipulate text.  

Review Questions 
7.1   

Use vi  and awk to perform the following tasks with the file 85321.txt (the 
student numbers have been changed to protect the innocent). This file is 
available from the 85321 Web site/CD-ROM under the resource materials 
section for week 3. Unless specified assume each task starts with the original 
file.  

O remove the student number  
P switch the order for first name, last name  
Q remove any student with the name david  

 

 



85321, Systems Administration Chapter 8:  Shell Programming 

David Jones (20.01.00) Page 186 

Chapter  
Shell Programming 

Introduction 

Shell Programming - WHY? 

While it is very nice to have a shell at which you can issue commands, have 
you had the feeling that something is missing?  Do you feel the urge to issue 
multiple commands by only typing one word?  Do you feel the need for 
variables, logic conditions and loops?  Do you strive for automation? 

If so, then welcome to shell programming.  

(If you answered no to any of the above then you are obviously in the wrong 
frame of mind to be reading this - please try again later :) 

Shell programming allows system administrators (and users) to create small 
(and occasionally not-so-small) programs for various purposes including 
automation of system administration tasks, text processing and installation of 
software. 

Perhaps the most important reason why a Systems Administrator needs to be 
able to read and understand shell scripts is the UNIX startup process.  UNIX 
uses a large number of shell scripts to perform a lot of necessary system 
configuration when the computer first starts.  If you can’t read shell scripts you 
can’t modify or fix the startup process. 

Shell Programming - WHAT? 

A shell program (sometimes referred to as a shell script) is a text file 
containing shell and UNIX commands.   Remember - a UNIX command is a 
physical program (like cat, cut and grep) where as a shell command is 
an “interpreted” command - there isn'’t a physical file associated with the 
command; when the shell sees the command, the shell itself performs certain 
actions (for example, echo) 

When a shell program is executed the shell reads the contents of the file line by 
line.  Each line is executed as if you were typing it at the shell prompt.  There 
isn't anything that you can place in a shell program that you can't type at the 
shell prompt. 

Shell programs contain most things you would expect to find in a simple 
programming language.  Programs can contain services including:  

• variables 

• logic constructs (IF THEN AND OR etc) 

• looping constructs (WHILE FOR) 



85321, Systems Administration Chapter 8:  Shell Programming 

David Jones (20.01.00) Page 187 

• functions 

• comments (strangely the most least used service) 

The way in which these services are implemented is dependant on the shell 
that is being used (remember - there is more than one shell).  While the 
variations are often not major it does mean that a program written for the 
bourne shell (sh/ bash) will not run in the c shell (csh).  All the examples in 
this chapter are written for the bourne shell. 

Shell Programming - HOW? 

Shell programs are a little different from what you’d usually class as a 
program.  They are plain text and they don’t need to be compiled.  The shell 
"interprets" shell programs - the shell reads the shell program line by line and 
executes the commands it encounters.  If it encounters an error (syntax or 
execution), it is just as if you typed the command at the shell prompt - an error 
is displayed. 

This is in contrast to C/C++, Pascal and Ada programs (to name but a few) 
which have source in plain text, but require compiling and linking to produce a 
final executable program. 

So, what are the real differences between the two types of programs?  At the 
most basic level, interpreted programs are typically quick to write/modify and 
execute (generally in that order and in a seemingly endless loop :).  Compiled 
programs typically require writing, compiling, linking and executing, thus are 
generally more time consuming to develop and test.  

However, when it comes to executing the finished programs, the execution 
speeds are often widely separated.  A compiled/linked program is a binary file 
containing a collection direct systems calls.  The interpreted program, on the 
other hand, must first be processed by the shell which then converts the 
commands to system calls or calls other binaries - this makes shell programs  
slow in comparison.  In other words, shell programs are not generally efficient 
on CPU time. 

Is there a happy medium?  Yes!  It is called Perl.  Perl is an interpreted 
language but is interpreted by an extremely fast, optimised interpreter.  It is 
worth noting that a Perl program will be executed inside one process, whereas 
a shell program will be interpreted from a parent process but may launch many 
child processes in the form of UNIX commands (ie. each call to a UNIX 
command is executed in a new process).  However, Perl is a far more difficult 
(but extremely powerful) tool to learn - and this chapter is called "Shell 
Programming"... 

The Basics 

A Basic Program 

It is traditional at this stage to write the standard "Hello World" program.  To 
do this in a shell program is so obscenely easy that we’re going to examine 



85321, Systems Administration Chapter 8:  Shell Programming 

David Jones (20.01.00) Page 188 

something a bit more complex - a hello world program that knows who you 
are... 

To create your shell program, you must first edit a file - name it something like 
"hello", "hello world" or something equally as imaginative - just don’t call it 
"test" - we will explain why later.   

In the editor, type the following (or you could go to the 85321 website/CD-
ROM and cut and paste the text from the appropriate web page) 

#!/bin/bash 
# This is a program that says hello 
echo "Hello $LOGNAME, I hope you have a nice day!" 

(You may change the text of line three to reflect your current mood if you 
wish) 

Now, at the prompt, type the name of your program - you should see 
something like: 

bash: ./helloworld: Permission denied      

Why? 

The reason is that your shell program isn’t executable because it doesn’t have 
its execution permissions set.  After setting these (Hint:  something involving 
the chmod command), you may execute the program by again typing its name 
at the prompt. 

An alternate way of executing shell programs is to issue a command at the 
shell prompt to the effect of: 

<shell> <shell program> 

eg 

bash helloworld 

This simply instructs the shell to take a list of commands from a given file 
(your shell script).  This method does not require the shell script to have 
execute permissions.  However, in general you will execute your shell scripts 
via the first method. 

And yet you may still find your script won'’t execute - why?  On some UNIX 
systems (Red Hat Linux included) the current directory (.) is not included in 
the PATH environment variable.  This mans that the shell can'’t find the script 
that you want to execute, even when it'’s sitting in the current directory!  To 
get around this either: 

R Modify the PATH variable to include the “.” directory: 

PATH=$PATH:. 
S Or, execute the program with an explicit path: 

./helloworld 
 



85321, Systems Administration Chapter 8:  Shell Programming 

David Jones (20.01.00) Page 189 

An Explanation of the Program 

Line one, #!/bin/bash is used to indicate which shell the shell program is 
to be run in.  If this program was written for the C shell, then you might have 
#!/bin/csh instead. 

It is probably worth mentioning at this point that UNIX “executes” programs 
by first looking at the first two bytes of the file (this is similar to the way MS-
DOS looks at the first two bytes of executable programs; all .EXE programs 
start with “MZ”).  From these two characters, the system knows if the file is an 
interpreted script (#!) or some other file type (more information can be 
obtained about this by typing man file).  If the file is an interpreted script, 
then the system looks for a following path indicating an interpreter.  For 
example: 

#!/bin/bash 
#!/usr/bin/perl 
#!/bin/sh 

Are all valid interpreters. 

Line two, # This is a program that says hello , is (you 
guessed it) a comment.  The "#" in a shell script is interpreted as "anything to 
the right of this is a comment, go onto the next line".  Note that it is similar to 
line one except that line one has the "!" mark after the comment. 

Comments are a very important part of any program - it is a really good idea to 
include some.  The reasons why are standard to all languages - readability, 
maintenance and self congratulation.  It is more so important for a system 
administrator as they very rarely remain at one site for their entire working 
career, therefore, they must work with other people's shell scripts (as other 
people must work with theirs). 

Always have a comment header; it should include things like: 

# AUTHOR:       Who wrote it 
# DATE:         Date first written 
# PROGRAM:      Name of the program 
# USAGE:        How to run the script; include any parameters 
# PURPOSE:      Describe in more than three words what the  
#               program does 
# 
# FILES:        Files the shell script uses 
# 
# NOTES:        Optional but can include a list of "features"  
#               to be fixed 
# 
# HISTORY:      Revisions/Changes         
 

This format isn't set in stone, but use common sense and write fairly self 
documenting programs. 



85321, Systems Administration Chapter 8:  Shell Programming 

David Jones (20.01.00) Page 190 

 

Version Control Systems 

Those of you studying software engineering may be familiar 
with the term, version control.  Version control allows you to 
keep copies of files including a list of who made what changes 
and what those changes were.  Version control systems can be 
very useful for keeping track of source code and is just about 
compulsory for any large programming project. 

Linux comes with CVS (Concurrent Versions System) a widely 
used version control system.  While version control may not 
seem all that important it can save a lot of heartache. 

Many large sites will actually keep copies of system 
configuration files in a version control system. 

Line three, echo "Hello $LOGNAME, I hope you have a nice 
day!" is actually a command.  The echo command prints text to the screen. 
Normal shell rules for interpreting special characters apply for the echo 
statement, so you should generally enclose most text in "".  The only tricky bit 
about this line is the $LOGNAME . What is this? 

$LOGNAME is a shell variable; you can see it and others by typing "set" at the 
shell prompt. In the context of our program, the shell substitutes the 
$LOGNAME value with the username of the person running the program, so the 
output looks something like: 

Hello jamiesob, I hope you have a nice day! 

All variables are referenced for output by placing a "$" sign in front of them - 
we will examine this in the next section. 

Exercises 

8.1. Modify the helloworld program so its output is something similar 
to: 
Hello <username>, welcome to <machine name> 

All You Ever  Wanted to Know About 
Var iables 
You have previously encountered shell variables and the way in which they are 
set.  To quickly revise, variables may be set at the shell prompt by typing: 

[david@faile david]$ variable="a string" 

Since you can type this at the prompt, the same syntax applies within shell 
programs. 

You can also set variables to the results of commands, for example: 

[david@faile david]$  variable=‘ls -al‘ 

(Remember - the ‘ is the execute quote) 



85321, Systems Administration Chapter 8:  Shell Programming 

David Jones (20.01.00) Page 191 

To print the contents of a variable, simply type: 

[david@faile david]$  echo $variable 

Note that we’ve added the "$" to the variable name. Variables are always 
accessed for output with the "$" sign, but without it for input/set 
operations. 

Returning to the previous example, what would you expect to be the output? 

You would probably expect the output from ls -al to be something like: 

drwxr-xr-x   2 jamiesob users        1024 Feb 27 19:05 ./ 
drwxr-xr-x  45 jamiesob users        2048 Feb 25 20:32 ../ 
-rw-r--r--   1 jamiesob users         851 Feb 25 19:37 conX 
-rw-r--r--   1 jamiesob users       12517 Feb 25 19:36 confile 
-rw-r--r--   1 jamiesob users           8 Feb 26 22:50 helloworld 
-rw-r--r--   1 jamiesob users       46604 Feb 25 19:34 net-acct     

and therefore, printing a variable that contains the output from that command 
would contain something similar, yet you may be surprised to find that it looks 
something like: 

drwxr-xr-x 2 jamiesob users 1024 Feb 27 19:05 ./ drwxr-xr-x 45 
jamiesob users 2048 Feb 25 20:32 ../ -rw-r--r-- 1 jamiesob users 851 
Feb 25 19:37 conX -rw-r--r-- 1 jamiesob users 12517 Feb 25 19:36 
confile -rw-r--r-- 1 jamiesob users 8 Feb 26 22:50 helloworld -rw-r--
r-- 1 jamiesob users 46604 Feb 25 19:34 net-acct 

Why? 

When placing the output of a command into a shell variable, the shell removes 
all the end-of-line markers, leaving a string separated only by spaces.  The use 
for this will become more obvious later, but for the moment, consider what the 
following script will do: 

#!/bin/bash 
$filelist=‘ls‘ 
cat $filelist 

Exercise 

8.2.  Type in the above program and run it.  Explain what is happening.  
Would the above program work if "ls -al" was used rather than 
"ls" - Why/why not? 

Predefined Variables 

There are many predefined shell variables, most established during your login.  
Examples include $LOGNAME, $HOSTNAME and $TERM - these names are not 
always standard from system to system (for example, $LOGNAME can also be 
called $USER).  There are however, several standard predefined shell variables 
you should be familiar with.  These include: 

$$ (The current process ID) 
$? (The exits status of last command)  

How would these be useful? 



85321, Systems Administration Chapter 8:  Shell Programming 

David Jones (20.01.00) Page 192 

$$ 

$$ is extremely useful in creating unique temporary files.  You will often find 
the following in shell programs: 

some command > /tmp/temp.$$ 
. 
. 
some commands using /tmp/temp.$$> 
. 
. 
rm /tmp/temp.$$ 

/tmp/temp.$$ would always be a unique file - this allows several people to 
run the same shell script simultaneously.  Since one of the only unique things 
about a process is its PID (Process-Identifier), this is an ideal component in a 
temporary file name.  It should be noted at this point that temporary files are 
generally located in the /tmp directory.   

$? 

$? becomes important when you need to know if the last command that was 
executed was successful.  All programs have a numeric exit status - on UNIX 
systems 0 indicates that the program was successful, any other number 
indicates a failure.  We will examine how to use this value at a later point in 
time. 

Is there a way you can show if your programs succeeded or failed?  Yes! This 
is done via the use of the exit command.  If placed as the last command in 
your shell program, it will enable you to indicate, to the calling program, the 
exit status of your script. 

exit is used as follows: 

exit 0  # Exit the script, $? = 0 (success) 
exit 1  # Exit the script, $? = 1 (fail)  

Another category of standard shell variables are shell parameters. 

Parameters - Special Shell Variables 

If you thought shell programming was the best thing since COBOL, then you 
haven’t even begun to be awed - shell programs can actually take parameters. 
Table 8.1 lists each variable associated with parameters in shell programs: 



85321, Systems Administration Chapter 8:  Shell Programming 

David Jones (20.01.00) Page 193 

 

Variable Purpose 

$0 the name of the shell program 

$1 thru $9 the first thru to ninth parameters 

$# the number of parameters 

$* all the parameters passed represented as a single 
word with individual parameters separated 

$@ all the parameters passed with each parameter as a 
separate word 

T a b l e  8 . 1   
S h e l l  P a r a m e t e r  V a r i a b l e s  

The following program demonstrates a very basic use of parameters: 

#!/bin/bash  
# FILE:         parm1 
VAL=‘expr ${1:-0} + ${2:-0} + ${3:-0}‘ 
echo "The answer is $VAL" 

Pop Quiz: Why are we using ${1:-0} instead of $1?  Hint:  
What would happen if any of the variables were not set? 

A sample testing of the program looks like: 

[david@faile david]$ parm1 2 3 5  
The answer is  10      
 
[david@faile david]$ parm1 2 3  
The answer is  5  
 
[david@faile david]$ parm  
The answer is  0       

Consider the program below: 

#!/bin/bash 
# FILE:         mywc 
 
FCOUNT=‘ls $*  2> /dev/null | wc -w‘ 
echo "Performing word count on $*" 
echo 
wc -w $* 2> /dev/null 
echo 
echo "Attempted to count words on $# files, found $FCOUNT"         

 

If the program that was run in a directory containing: 

conX          net-acct      notes.txt     shellprog~    t1~ 
confile       netnasties    notes.txt~    study.htm     ttt 
helloworld    netnasties~   scanit*       study.txt     tes/ 
my_file       netwatch      scanit~       study_~1.htm 
mywc*         netwatch~     shellprog     parm1*           

Some sample testing would produce: 

[david@faile david]$ mywc mywc 
Performing word count on mywc 



85321, Systems Administration Chapter 8:  Shell Programming 

David Jones (20.01.00) Page 194 

 
34 mywc 
 
Attempted to count words on 1 files, found       1 
[david@faile david]$  mywc mywc anotherfile  
Performing word count on mywc anotherfile 
 
34 mywc 
34 total 

 
Attempted to count words on 2 files, found       1      

Exercise 

8.3. Explain line by line what this program is doing.  What would happen if 
the user didn’t enter any parameters?  How could you fix this? 

Only Nine Parameters? 

Well that’s what it looks like doesn’t it?  We have $1 to $9 - what happens if 
we try to access $10?  Try the code below: 

#!/bin/bash 
# FILE:  testparms 
echo "$1 $2 $3 $4 $5 $6 $7 $8 $9 $10 $11 $12" 
echo $* 
echo $# 

Run testparms as follows: 

[david@faile david]$  testparms a b c d e f g h I j k l 

The output will look something like: 

a b c d e f g h i a0 a1 a2 
a b c d e f g h I j k l 
12 

Why? 

The shell only has 9 command-line parameters defined at any one time $1 to 
$9.  When the shell sees "$10" it interprets this as "$1" with a "0" after it.  
This is where $10 in the above results in a0.  The a is the value of $1 with the 0 
added.   

On the otherhand  $* allows you to see all the parameters you typed! 

So how do you access $10, $11 etc.  To our rescue comes the shift 
command.  shift works by removing the first parameter from the parameter 
list and shuffling the parameters along.  Thus $2 becomes $1, $3 becomes $2 
etc.  Finally, (what was originally) the tenth parameter becomes $9.  However, 
beware!  Once you’ve run shift, you have lost the original value of $1 
forever - it is also removed from $* and $@.  shift is executed by, well, 
placing the word "shift" in your shell script, for example: 

#!/bin/bash 
echo $1 $2 $3 



85321, Systems Administration Chapter 8:  Shell Programming 

David Jones (20.01.00) Page 195 

shift 
echo $1 $2 $3 

Exercise 

8.4. Modify the testparms program so the output looks something like: 
a b c d e f g h i a0 a1 a2 
a b c d e f g h I j k l  
12    
b c d e f g h i j b1 b2 b3 
b c d e f g h i j k l    
11 
c d e f g h i j k c0 c1 c2 
c d e f g h I j k l  
10  

The difference between $* and $@ 

$* and $@ are very closely related.  They both are expanded to become a list 
of all the command line parameters passed to a script.  However, there are 
some subtle differences in how these two variables are treated.  The subtleties 
are made even more difficult when they appear to act in a very similar way (in 
some situations).  For example, let’s see what happens with the following shell 
script 

#for name in $* 
for name in $@ 
do 
  echo param is $name 
done 

The idea with this script is that you can test it with either $* or $@ by 
uncommenting the one you want to experiment and comment out the other 
line.  The following examples show what happens when I run this script.  The 
first time with $@, the second with $* 

[david@faile david]$ tmp.sh hello "how are you" today 1 2 3  
param is hello 
param is how 
param is are 
param is you 
param is today 
param is 1 
param is 2 
param is 3 
[david@faile david]$ tmp.sh hello "how are you" today 1 2 3  
param is hello 
param is how 
param is are 
param is you 
param is today 
param is 1 
param is 2 
param is 3 



85321, Systems Administration Chapter 8:  Shell Programming 

David Jones (20.01.00) Page 196 

As you can see no difference!!  So what’s all this fuss with $@ and $*?  The 
difference comes when $@ and $* are used within double quotes.  In this 
situation they work as follows 

• $@ 

Is expanded to all the command-line parameters joined as a single word 
with usually a space seperating them (the separating character can be 
changed). 

• $*  
Expands to all the command-line parameters BUT each command-line 
parameter is treated as if it is surrounded by double quotes "".  This is 
especially important when one of the parameters contains a space. 

Let’s modify the our example script so that $@ and $* are surrounded by "" 

#for name in "$*" 
for name in "$@" 
do 
  echo param is $name 
done 

Now look at what happens when we run it using the same parameters as 
before.  Again the $@ version is executed first then the $* version. 

[david@faile david]$ tmp.sh hello "how are you" today 1 2 3  
param is hello 
param is how are you 
param is today 
param is 1 
param is 2 
param is 3 
[david@faile david]$ tmp.sh hello "how are you" today 1 2 3  
param is hello how are you today 1 2 3 

With the second example, where $* is used, the difference is obvious.  The 
first example, where $@ is used, shows the advantage of $@.  The second 
parameter is maintained as a single parameter. 

The basics of input/output (IO) 
We have already encountered the "echo" command, yet this is only the "O" 
part of IO - how can we get user input into our programs?  We use the "read" 
command.  For example: 

#!/bin/bash 
# FILE:  testread 
read X 
echo "You said $X" 

The purpose of this enormously exciting program should be obvious. 

Just in case you were bored with the echo command.  Table 8.2 shows a few 
backslash characters that you can use to brighten your shell scripts: 



85321, Systems Administration Chapter 8:  Shell Programming 

David Jones (20.01.00) Page 197 

 

Character Purpose 

\a alert (bell) 

\b backspace 

\c don’t display the trailing newline 

\n new line 

\r carriage return 

\t horizontal tab 

\v vertical tab 

\\ backslash 

\nnn the character with ASCII number nnn (octal)          

T a b l e  8 . 2   
e c h o  b a c k s l a s h  o p t i o n s  

(type "man echo" to see this exact table :) 

To enable echo to interpret these backslash characters within a string, you 
must issue the echo command with a "-e" switch.  You may also add a "-n" 
switch to stop echo printing a new-line at the end of the string - this is a good 
thing if you want to output a prompting string.  For example: 

#!/bin/bash 
# FILE:  getname 
echo -n "Please enter your name: " 
read NAME 
echo "Your name is $NAME" 

(This program would be useful for those with a very short memory) 

At the moment, we’ve only examined reading from STDIN (standard input 
a.k.a. the keyboard) and STDOUT (standard output a.k.a. the screen) - if we 
want to be really clever we can change this. 

What do you think the following does? 

read X < afile 

or what about 

echo $X > anotherfile 

If you said that the first read the contents of afile into a variable $X and the 
second wrote the value of $X to anotherfile you’d almost be correct.  The 
read operation will only read the first line (up to the end-of-line marker) from 
afile - it doesn’t read the entire file. 

You can also use the ">>" and "<<"  redirection operators. 



85321, Systems Administration Chapter 8:  Shell Programming 

David Jones (20.01.00) Page 198 

Exercises 

8.5. What would you expect: 
 
read X << END 
 
would do?  What do you think $X would hold if the input was: 
 
Dear Sir 
I have no idea why your computer blew up. 
Kind regards, me. 
END 

And now for  the hard bits 

Scenario 

So far we have been dealing with very simple examples - mainly due to the 
fact we’ve been dealing with very simple commands.  Shell scripting was not 
invented so you could write programs that ask you your name then display it.  
For this reason, we are going to be developing a real program that has a useful 
purpose.  We will do this section by section as we examine more shell 
programming concepts.  While you are reading each section, you should 
consider how the information could assist in writing part of the program. 

The actual problem is as follows: 

You’ve been appointed as a system administrator to an academic department 
within a small (anonymous) regional university.  The previous system 
administrator left in rather a hurry after it was found that department'’s main 
server had being playing host to plethora of pornography, warez (pirate 
software) and documentation regarding interesting alternative uses for various 
farm chemicals. 

There is some concern that the previous sys admin wasn’t the only individual 
within the department who had been availing themselves to such wonderful 
and diverse resources on the Internet.  You have been instructed to identify 
those persons who have been visiting "undesirable" Internet sites and advise 
them of the department's policy on accessing inappropriate material 
(apparently there isn't one, but you've been advised to improvise).  Ideally, you 
will produce a report of people accessing restricted sites, exactly which sites 
and the number of times they visited them. 

To assist you, a network monitoring program produces a datafile containing a 
list of users and sites they have accessed, an example of which is listed below: 

FILE: netwatch 
 
jamiesob mucus.slime.com 
tonsloye xboys.funnet.com.fr 
tonsloye sweet.dreams.com 
root sniffer.gov.au 
jamiesob marvin.ls.tc.hk 
jamiesob never.land.nz 



85321, Systems Administration Chapter 8:  Shell Programming 

David Jones (20.01.00) Page 199 

jamiesob guppy.pond.cqu.edu.au 
tonsloye xboys.funnet.com.fr 
tonsloye www.sony.com 
janesk horseland.org.uk 
root www.nasa.gov 
tonsloye warez.under.gr 
tonsloye mucus.slime.com 
root ftp.ns.gov.au 
tonsloye xboys.funnet.com.fr 
root linx.fare.com 
root crackz.city.bmr.au 
janesk smurf.city.gov.au 
jamiesob mucus.slime.com 
jamiesob mucus.slime.com 

After careful consideration (and many hours of painstaking research) a 
steering committee on the department’s policy on accessing the internet has 
produced a list of sites that they have deemed "prohibited" - these sites are 
contained in a data file, an example of which is listed below: 

FILE: netnasties 
 

mucus.slime.com 
xboys.funnet.com.fr 
warez.under.gr 
crackz.city.bmr.au  

It is your task to develop a shell script that will fulfil these requirements (at the 
same time ignoring the privacy, ethics and censorship issues at hand :) 

(Oh, it might also be an idea to get Yahoo! to remove the link to your main 
server under the /Computers/Software/Hackz/Warez/Sites listing... ;) 

if ... then ... maybe? 

Shell programming provides the ability to test the exit status from commands 
and act on them.  One way this is facilitated is: 

if command 
then 
  do other commands 
fi 

You may also provide an "alternate" action by using the "if" command in the 
following format: 

if command 
then 
  do other commands 
else 
  do other commands 
fi 

And if you require even more complexity, you can issue the if command as: 

if command 
then 
  do other commands 
elif anothercommand 
  do other commands 
fi 



85321, Systems Administration Chapter 8:  Shell Programming 

David Jones (20.01.00) Page 200 

To test these structures, you may wish to use the true and false UNIX 
commands.  true always sets $? to 0 and false sets $? to 1 after 
executing. 

Remember:  if tests the exit code of a command - it isn’t used to compare 
values; to do this, you must use the test command in combination with the 
if structure - test will be discussed in the next section. 

What if you wanted to test the output of two commands?  In this case, you can 
use the shell’s && and || operators.  These are effectively "smart" AND and 
OR operators. 

The && works as follows: 

command1 && command2 

command2 will only be executed if command1 succeeds. 

The || works as follows: 

command1 || command2 

command2 will only be executed if command1 fails. 

These are sometimes referred to as "short circuit" operators in other languages. 

Given our problem, one of the first things we should do in our program is to 
check if our datafiles exist.  How would we do this? 

#!/bin/bash 
# FILE:  scanit 
if ls netwatch && ls netnasties 
then 
 echo "Found netwatch and netnasties!" 
else 
 echo "Can not find one of the data files - exiting" 
 exit 1 
fi          

Exercise 

8.6. Enter the code above and run the program.  Notice that the output from 
the ls commands (and the errors) appear on the screen - this isn’t a 
very good thing.  Modify the code so the only output to the screen is 
one of the echo messages. 

Testing Testing... 

Perhaps the most useful command available to shell programs is the test 
command.  It is also the command that causes the most problems for first time 
shell programmers - the first program they ever write is usually (imaginatively) 
called test - they attempt to run it - and nothing happens - why?  (Hint:  type 
which test, then type echo $PATH - why does the system command 
test run before the programmer’s shell script?) 

The test command allows you to: 

• test the length of a string 



85321, Systems Administration Chapter 8:  Shell Programming 

David Jones (20.01.00) Page 201 

• compare two strings 

• compare two numbers 

• check on a file’s type 

• check on a file’s permissions 

• combine conditions together       

test actually comes in two flavours: 

test an_expression 

and 

[ an_expression ] 

They are both the same thing - it’s just that [ is soft-linked to 
/usr/bin/test ; test actually checks to see what name it is being called 
by; if it is [ then it expects a ] at the end of the expression. 

What do we mean by "expression"?  The expression is the string you want 
evaluated.  A simple example would be: 

if [ "$1" = "hello" ] 
then 
   echo "hello to you too!" 
else 
   echo "hello anyway" 
fi 

This simply tests if the first parameter was hello.  Note that the first line 
could have been written as: 

if test "$1" = "hello" 

Tip :  Note that we surrounded the variable $1 in quotes.  This is to take care of 
the case when $1 doesn’t exist - in other words, there were no parameters 
passed.  If we had simply put $1 and there wasn’t any $1, then an error would 
have been displayed: 

test: =: unary operator expected  

This is because you’d be effectively executing: 

test NOTHING = "hello" 

= expects a string to its left and right - thus the error.  However, when placed 
in double quotes, you be executing: 

test "" = "hello" 

which is fine; you’re testing an empty string against another string. 

You can also use test to tell if a variable has a value in it by: 

test $var 

This will return true if the variable has something in it, false if the variable 
doesn’t exist OR it contains null ("").   

We could use this in our program.  If the user enters at least one username to 
check on, them we scan for that username, else we write an error to the screen 
and exit: 



85321, Systems Administration Chapter 8:  Shell Programming 

David Jones (20.01.00) Page 202 

if [ $1 ] 
then 
  the_user_list=echo $* 
else 
  echo "No users entered - exiting! 
  exit 2 
fi     

Expressions, expressions! 

So far we’ve only examined expressions containing string based comparisons.  
The following tables list all the different types of comparisons you can perform 
with the test command. 

Expression True if 

-z string length of string is 0 

-n string length of string is not 0 

string1 = string2 if the two strings are identical 

string != string2 if the two strings are NOT identical 

String if string is not NULL 

T a b l e  8 . 3  
S t r i n g  b a s e d  t e s t s  

Expression True if 

int1 -eq int2 first int is equal to second 

int1 -ne int2 first int is not equal to second 

int1 -gt int2 first int is greater than second 

Int1 -ge int2 first int is greater than or equal to second 

Int1 -lt int2 first int is less than second 

Int1 -le int2 first int is less than or equal to second 

T a b l e  8 . 4   
N u m e r i c  t e s t s  



85321, Systems Administration Chapter 8:  Shell Programming 

David Jones (20.01.00) Page 203 

 

Expression True if 

-r file File  exists and is readable 

-w file file  exists and is writable 

-x file file  exists and is executable 

-f file file  exists and is a regular file 

-d file file  exists and is directory 

-h file file  exists and is a symbolic link 

-c file file  exists and is a character special file 

-b file file  exists and is a block special file 

-p file file  exists and is a named pipe 

-u file file  exists and it is setuid 

-g file file  exists and it is setgid 

-k file file  exists and the sticky bit is set 

-s file file  exists and its size is greater than 0 

T a b l e  8 . 5   
F i l e  t e s t s  

Expression Purpose 

! reverse the result of an expression 

-a AND operator 

-o OR operator 

( expr ) group an expression, parentheses have special 
meaning to the shell so to use them in the test 
command you must quote them 

T a b l e  8 . 6   
L o g i c  o p e r a t o r s  w i t h  t e s t  

Remember:  test uses different operators to compare strings and numbers - 
using -ne on a string comparison and != on a numeric comparison is 
incorrect and will give undesirable results. 

Exercise 

8.7. Modify the code for scanit so it uses the test command to see if the 
datafiles exists. 

All about case 

Ok, so we know how to conditionally perform operations based on the return 
status of a command.  However, like a combination between the if statement 
and the test $string = $string2, there exists the case statement. 



85321, Systems Administration Chapter 8:  Shell Programming 

David Jones (20.01.00) Page 204 

case value in 
  pattern 1) command 
  anothercommand ;; 
  pattern 2) command 
   anothercommand ;; 
esac 

case works by comparing value against the listed patterns.  If a match is 
made, then the commands associated with that pattern are executed (up to the 
";;" mark) and $? is set to 0.  If a match isn’t made by the end of the case 
statement (esac) then $? is set to 1. 

The really useful thing is that wildcards can be used, as can the "|" symbol 
which acts as an OR operator.  The following example gets a Yes/No response 
from a user, but will accept anything starting with "Y" or "y" as YES, "N" or 
"n" as no and anything else as "MAYBE" 

echo -n "Your Answer: " 
read ANSWER 
case $ANSWER in 
  Y* | y*) ANSWER="YES" ;; 
  N* | n*) ANSWER="NO" ;; 
  *) ANSWER="MAYBE" ;; 
esac 
echo $ANSWER 

Exercise 

8.8. Write a shell script that inputs a date and converts it into a long date 
form.  For example: 
$~ > mydate 12/3/97 
12th of March 1997 
 
$~ > mydate 
Enter the date: 1/11/74 
1st of November 1974 

Loops and Repeated Action Commands 

Looping - "the exciting process of doing something more than once" - and shell 
programming allows it.  There are three constructs that implement looping: 

while - do - done 
for - do - done 
until - do - done 

while 

The format of the while construct is: 

while command 
do 
  commands 
done 

(while command is true, commands are executed) 



85321, Systems Administration Chapter 8:  Shell Programming 

David Jones (20.01.00) Page 205 

Example 

while [ $1 ] 
do 
  echo $1 
  shift 
done 

What does this segment of code do?  Try running a script containing this code 
with a b c d e on the command line. 

while also allows the redirection of input.  Consider the following: 

#!/bin/bash 
# FILE:  linelist 
# 
count=0 
while read BUFFER 
do 
  count=‘expr $count + 1‘   # Increment the count 
  echo "$count $BUFFER"    # Echo it out 
done < $1   # Take input from the file 

This program reads a file line by line and echo’s it to the screen with a line 
number. 

Given our scanit program, the following could be used read the netwatch 
datafile and compare the username with the entries in the datafile: 

while read buffer 
do 
  user=‘echo $buffer | cut -d" " -f1‘ 
  site=‘echo $buffer | cut -d" " -f2‘ 
  if [ "$user" = "$1" ] 
  then 
    echo "$user visited $site" 
  fi 
done < netwatch     

Exercise 

8.9. Modify the above code so that the site is compared with all sites in the 
prohibited sites file (netnasties).  Do this by using another while 
loop.  If the user has visited a prohibited site, then echo a message to 
the screen. 

for 

The format of the for construct is: 

for variable in list_of_variables 
do 
  commands 
done 

(for each value in list_of_variables, "commands" are executed) 



85321, Systems Administration Chapter 8:  Shell Programming 

David Jones (20.01.00) Page 206 

Example 

We saw earlier in this chapter examples of the for command showing the 
difference between $* and $@. 

Another example 

for count in 10 9 8 7 6 5 4 3 2 1 
do 
  echo -n "$count.." 
done 
 
echo 

Modifying scanit 

Given our scanit program, we might wish to report on a number of users.  
The following modifications will allow us to accept and process multiple users 
from the command line: 

for checkuser in $* 
do 
  while read buffer 
  do 
    while read checksite 
    do 
      user=‘echo $buffer | cut -d" " -f1‘ 
      site=‘echo $buffer | cut -d" " -f2‘ 
      if [ "$user" = "$checkuser" -a "$site" = "$checksite" ] 
      then 
        echo "$user visited the prohibited site $site" 
      fi 
    done < netnasties 
  done < netwatch     
done 

Problems with running scanit 

A student in the 1999 offering of 85321 reported the following problem with 
the scanit program on page 160 of chapter 8 of the 85321 textbook.  

When running her program she types 

Bash scanit jamiesob 

and quite contrary to expectations she gets 80 lines of output that includes  

 root visited the prohibited site crackz.city.bmr.au 
 root visited the prohibited site crackz.city.bmr.au 
 janesk visited the prohibited site smurf.city.gov.au 
 janesk visited the prohibited site smurf.city.gov.au 
 janesk visited the prohibited site smurf.city.gov.au 
 janesk visited the prohibited site smurf.city.gov.au 
 jamiesob visited the prohibited site mucus.slime.com 
 jamiesob visited the prohibited site mucus.slime.com  

If everything is working the output you should get is three lines of code 
reporting that the user jamiesob has visited the site mucus.slime.com.  

So what is the problem?  



85321, Systems Administration Chapter 8:  Shell Programming 

David Jones (20.01.00) Page 207 

Well let’s have a look at her shell program  

 for checkuser in $* 
 do 
   while read buffer 
   do 
     while read checksite 
     do 
       user=‘echo $buffer | cut -d" " -f1‘ 
       site=‘echo $buffer | cut -d" " -f2‘ 
       if [ "$user"="$checkuser" -a "$site"="$checksite" ] 
       then 
         echo "$user visited the prohibited site $site" 
       fi 
     done < netnasties 
   done < netwatch 
 done  

Can you see the problem?  

How do we identify the problem? Well let’s start by thinking about what the 
problem is. The problem is that it is showing too many lines.  The script is not 
excluding lines which should not be displayed.  Where are the lines displayed?  

The only place is within the if command. This seems to imply that the problem 
is that the if command isn’t working. It is matching too many times, in fact it is 
matching all of the lines.  

The problem is that if command is wrong or not working as expected.  

How is it wrong?  

Common mistakes with the if command include  

• not using the test command 
Some people try comparing "things" without using the test command 
if "$user"="$checkuser" -a "$site"="$checksite" 
The student is using the test command in our example. In fact, she is using 
the [ form of the test command. So this isn’t the problem.  

• using the wrong comparison operator 
Some people try things like 
if [ "$user" == "$checkuser" ]  or 
if [ "$user" -eq "$checkuser" ]  
Trouble with this is that == is comparison operator from the C/C++ 
programming languages and not a comparison operator supported by the 
test command. -eq is a comparison operator supported by test but it is used 
to compare numbers not strings. This isn’t the problem here.  

The problem here is some missing spaces around the = signs.  

Remember that [ is actually a shell command (it’s the same command test). 
Like other commands it takes parameters. Let’s have a look at the parameters 
that the test command takes in this example program.  

The test  command is 
[ "$user"="$checkuser" -a "$site"="$checksite" ]  



85321, Systems Administration Chapter 8:  Shell Programming 

David Jones (20.01.00) Page 208 

Parameters must be surrounded by spaces. So this command has four 
parameters (the first [ is the command name)  

1. "$user"="$checkuser"  

2. -a  

3. "$site"="$checksite"  

4. ]  

By now you might start to see the problem. For the test command to actual 
compare two "things" it needs to see the = as a separate parameter. The 
problem is that because there are no spaces around the = characters in this test 
command the = is never seen. It’s just part of a string.  

The solution to this problem is to put some space characters around the two =. 
So we get  
[ "$user" = "$checkuser" -a "$site" = "$checksite" ]  

So what is happening  

So what is actually happening? Why is the test always returning true. We know 
this because the script displays a line for all the users and all the sites.  

To find the solution to this problem we need to take a look at the manual page 
for the test command. On current Linux computers you can type man test and 
you will see a manual page for this command. However, it isn’t the one you 
should look at.  

Type the following command which test. It should tell you where the 
executable program for test is located. Trouble is that on current Linux 
computers it won’t. That’s because there isn’t one. Instead the test command is 
actually provided by the shell, in this case bash. To find out about the test 
command you need to look at the man page for bash.  

The other approach would be to look at Table 8.3 from chapter 8 of the 85321 
textbook. In particular the last entry which says that if the expression in a test 
command is a string then the test command will return true if the string is non-
zero (i.e. it has some characters).  

Here are some examples to show what this actually means.  

In these examples I’m using the test command by itself and then using the echo 
command to have a look at the value of the $? shell variable. The $? shell 
variable holds the return status of the previous command.  

For the test command if the return status is 0 then the expression was true. If it 
is 1 then the expression as false.  

 [david@faile 8]$ [ fred ] 
 [david@faile 8]$ echo $? 
 0 
 [david@faile 8]$ [ ] 
 [david@faile 8]$ echo $? 
 1 
 [david@faile 8]$ [ "jamiesob"="mucus.slime.com" ] 
 [david@faile 8]$ echo $? 
 0 



85321, Systems Administration Chapter 8:  Shell Programming 

David Jones (20.01.00) Page 209 

 [david@faile 8]$ [ "jamiesob" = "mucus.slime.com" ] 
 [david@faile 8]$ echo $? 
 1  

In the first example the expression is fred a string with a non-zero length. So 
the return status is 0 indicating true. In the second example there is no 
expression, so it is a string with zero length. So the return status is 1 indicating 
false.  

The last two examples are similar to the problem and solution in the student’s 
program. The third example is similar to the students problem. The parameter 
is a single non-zero length string ("jamiesob"="mucus.slime.com" ) so 
the return status is 0 indicating truth.  

When we add the spaces around the = we finally get what we wanted. The test 
command actually compares the two strings and sets the return status 
accordingly and because the strings are different the return status is 1 
indicating false.  

So what about the -a operator used in the student’s program. Well the -a simply 
takes the results of two expressions (one on either side) and ands them 
together. In the student’s script there the two expressions are non-zero length 
strings. Which are always true. So that becomes 0 -a 0 (TRUE and TRUE) 
which is always true.  

Here are some more examples  

 [david@faile 8]$ [ "jamiesob"="mucus.slime.com" -a "david"="fred" ] 
 [david@faile 8]$ echo $? 
 0 
 [david@faile 8]$ [ "jamiesob"="mucus.slime.com" -a "" ] 
 [david@faile 8]$ echo $? 
 1 
 [david@faile 8]$ [ "jamiesob" = "mucus.slime.com" -a "david" = 
"david" ] 
 [david@faile 8]$ echo $? 
 1 
 [david@faile 8]$ [ "jamiesob" = "jamiesob" -a "david" = "david" ] 
 [david@faile 8]$ echo $? 
 0  

The first example here is what is happening in the student’s program. Two non-
zero length strings, which are always true, "anded" together will always return 
true regardless of the strings.  

The second example shows what happens when one side of the -a is a zero 
length string. A zero length string is always false, false and true is always 
false, so this example has a return status of 1 indicating false.  

The last two examples show "working" versions of the test command with 
spaces in all the right places. Where the two strings being compared are 
different the comparison is false and the test command is returning false. 
Where the two strings being compared are the same the comparison operator is 
returning true and the test command is returning true.  



85321, Systems Administration Chapter 8:  Shell Programming 

David Jones (20.01.00) Page 210 

Exercises  

8.10. What will be the return status of the following test commands? Why? 
["hello"]  
[ $HOME ]  
[ "‘hello‘" ]  

8.11. The above code is very inefficient IO wise - for every entry in the 
netwatch  file, the entire netnasties  file is read in.  Modify the code so 
that the while loop reading the netnasties file is replaced by a for loop. 
(Hint: what does: BADSITES=‘cat netnasties‘  do?) 
 
EXTENSION:  What other IO inefficiencies does the code have?  Fix 
them. 

Speed and shell scr ipts 
Exercise 8.11 is actually a very important problem in that it highlights a 
common mistake made by many novice shell programmers.  This mistake is 
especially prevalent amongst people who have experience in an existing 
programming language like C/C++ or Pascal.  

This supplementary material is intended to address that problem and hopefully 
make it a little easier for you to answer question 11. Online lecture 8, 
particularly on slide 21 also addresses this problem. You might want to have a 
look at and listen to this slide before going much further.  

What’s the mistake  

A common mistake for beginning shell programmers make is to write shell 
programs as if they were C/C++ programs.  In particular they tend not to make 
use of the collection of very good commands which are available. 

Let’s take a look at a simple example of what I mean. The problem is to count 
the number of lines in a file (the file is called the_file). The following section 
discusses three solutions to this problem: a solution in C, a shell solution 
written like the C program, and a "proper" shell/UNIX solution 

Solution in C  

 #include <stdio.h> 
  
 void main( void ) 
 { 
   int line_count = 0; 
   FILE *infile; 
   char line[500]; 
  
   infile = fopen( "the_file", "r" );  
  
   while ( ! feof( infile ) ) 
   { 
     fgets( line, 500, infile ); 
     line_count++; 
   } 



85321, Systems Administration Chapter 8:  Shell Programming 

David Jones (20.01.00) Page 211 

   printf( "Number of lines is %d\n", line_count-1 ); 
 } 
  

Pretty simple to understand? Open the file, read the file line by line, increment 
a variable for each line and then display the variable when we reach the end of 
the file.  

Shell solution written by C programmer  

It is common for new comers to the shell to write shell scripts like C (or 
whatever procedural language they are familiar with) programs.  Here’s a shell 
version of the previous C solution.  It uses the same algorithm. 

 count=0 
 while read line 
 do 
   count=‘expr $count + 1‘ 
 done < the_file       
  
 echo Number of lines is $count  

This shell script reads the file line by line, increment a variable for each line 
and when we reach the end of the file display the value.  

Shell solution by shell programmer  

Anyone with a modicum of UNIX experience will know that you don’t need to 
write a shell program to solve this problem. You just use the wc command.  

 wc -l the_file  

This may appear to be a fairly trivial example.  However, it does emphasise a 
very important point.  You don’t want to use the shell commands like a normal 
procedural programming language.  You want to make use of the available 
UNIX commands where ever possible. 

Comparing the solutions  

Let’s compare the solutions.  

The C program is obviously the longest solution when it comes to size of the 
program. The shell script is much shorter. The shell takes care of a lot of tasks 
you have to do with C and the use of wc is by far the shortest.  The UNIX 
solutions are also much faster to write as there is no need for a compile/test 
cycle.  This is one of the advantages of scripting languages like the shell, Perl 
and TCL. 

What about speed of execution?  

As we’ve seen in earlier chapters you can test the speed of executable programs 
(in a very coarse way) with the time command. The following shows the time 
taken for each solution.  In the tests each of the three solutions worked on the 
same file which contained 1911 lines.  

[david@faile david]$ time ./cprogram 
Number of lines is 1911 
0.00user 0.01system 0:00.01elapsed 83%CPU (0avgtext+0avgdata 0maxresident)k 
0inputs+0outputs (79major+11minor)pagefaults 0swaps 
  



85321, Systems Administration Chapter 8:  Shell Programming 

David Jones (20.01.00) Page 212 

[david@faile david]$ time sh shsolution 
Number of lines is 1911 
12.24user 14.17system 0:28.12elapsed 93%CPU (0avgtext+0avgdata  
0maxresident)k 
0inputs+0outputs (164520major+109070minor)pagefaults 0swaps 
 
[david@faile david]$ time wc -l /var/log/messages 
   1911 /var/log/messages 
0.00user 0.01system 0:00.04elapsed 23%CPU (0avgtext+0avgdata 0maxresident)k 
0inputs+0outputs (85major+14minor)pagefaults 0swaps  

The lesson to draw from these figures is that solutions using the C program and 
the wc command have the same efficiency but using the wc command is much 
quicker.  

The shell programming solution which was written like a C program is 
horrendously inefficient. It is tens of thousands of times slower than the other 
two solutions and uses an enormous amount of resources.   

The problem  

Obviously using while loops to read a file line by line in a shell program is 
inefficient and should be avoided. However, if you think like a C programmer 
you don’t know any different.  

When writing shell programs you need to modify how you program to make 
use of the strengths and avoid the weaknesses of shell scripting. Where 
possible you should use existing UNIX commands.  

A solution for scanit?  

Just because the current implementation of scanit uses two while loops it 
doesn’t mean that your solution has to. Think about the problem you have to 
solve.  

In the case of improving the efficiency of scanit you have to do the following 

• for every user entered as a command line parameter  

• see if the user has visited one of the sites listed in the netnasties file  

To word it another way, you are searching for lines in a file which match a 
certain criteria. What UNIX command does that?  

Number of processes  

Another factor to keep in mind is the number of processes your shell script 
creates. Every UNIX command in a shell script will create a new process. 
Creating a new process is quite a time and resource consuming job performed 
by the operating system. One thing you want to do is to reduce the number of 
new processes created.  

Let’s take a look at the shell program solution to our problem  

 count=0 
 while read line 
 do 
   count=‘expr $count + 1‘ 
 done < the_file       



85321, Systems Administration Chapter 8:  Shell Programming 

David Jones (20.01.00) Page 213 

  
 echo Number of lines is $count  

For a file with 1911 lines this shell program is going to create about 1913 
processes. 1 process for the echo command at the end, one process to for a new 
shell to run the script and 1911 processes for the expr command. Every time 
the script reads a line it will create a new process to run the expr command. So 
the longer the file the less efficient this script is going to get.  

One way to address this problem somewhat is to use the support that the bash 
shell provides for arithmetic. By using the shell’s arithmetic functions we can 
avoid creating a new process because the shell process will do it.  

Our new shell script looks like this  

 count=0 
 while read line 
 do 
   count=$[ $count + 1 ] 
 done < /var/log/messages 
  
 echo Number of lines is $count   

See the change in the line incrementing the count variable. It’s now using the 
shell arithmetic support. Look what happens to the speed of execution.  

 [david@faile 8]$ time bash test6 
 Number of lines is 1915 
 1.28user 0.52system 0:01.83elapsed 98%CPU (0avgtext+0avgdata 0maxresident)k 
 0inputs+0outputs (179major+30minor)pagefaults 0swaps 

We have a slightly bigger file but even so the speed is much, much better.   
However, the speed is still no where as good as simply using the wc command. 

until 
The format of the until construct is: 

until command 
do 
  commands 
done 

("commands" are executed until "command" is true) 

Example 

until [ "$1" = "" ] 
do 
  echo $1 
  shift 
done 



85321, Systems Administration Chapter 8:  Shell Programming 

David Jones (20.01.00) Page 214 

break and continue 

Occasionally you will want to jump out of a loop; to do this you need to use 
the break command.  break is executed in the form: 

break 

or 

break n 

The first form simply stops the loop, for example: 

while true 
do 
  read BUFFER 
  if [ "$BUFFER" = "" ] 
  then 
    break 
  fi 
  echo $BUFFER 
done 

This code takes a line from the user and prints it until the user enters a blank 
line.  The second form of break, break n (where n is a number) effectively 
works by executing break "n" times.  This can break you out of embedded 
loops, for example: 

for file in $* 
do 
  while read BUFFER 
  do 
    if [ "$BUFFER" = "ABORT" ] 
    then 
      break 2 
    fi 
  echo $BUFFER 
  done < $file 
done 

This code prints the contents of multiple files, but if it encounters a line 
containing the word "ABORT" in any one of the files, it stops processing. 

Like break, continue is used to alter the looping process.  However, 
unlike break, continue keeps the looping process going; it just fails to 
finish the remainder of the current loop by returning to the top of the loop. For 
example: 

while read BUFFER 
do 
  charcount=‘echo $BUFFER | wc -c | cut -f1‘ 
  if [ $charcount -gt 80 ]   
  then 
    continue 
  fi 
  echo $BUFFER 
done < $1 

This code segment reads and echo’s the contents of a file - however, it does not 
print lines that are over 80 characters long. 



85321, Systems Administration Chapter 8:  Shell Programming 

David Jones (20.01.00) Page 215 

Redirection 

Not just the while - do - done loops can have IO redirection; it is possible 
to perform piping, output to files and input from files on if, for and until 
as well.  For example: 

if true 
then 
  read x 
  read y 
  read x 
fi < afile 

This code will read the first three lines from afile.  Pipes can also be used: 

read BUFFER 
while [ "$BUFFER" != "" ] 
do 
  echo $BUFFER 
  read BUFFER 
done | todos > tmp.$$ 

This code uses a non-standard command called todos.  todos converts 
UNIX text files to DOS textfiles by making the EOL (End-Of-Line) character 
equivalent to CR (Carriage-Return) LF (Line-Feed).  This code takes STDIN 
(until the user enters a blank line) and pipes it into todos, which in turn 
converts it to a DOS style text file ( tmp.$$ ) .  In all, a totally useless 
program, but it does demonstrate the possibilities of piping. 

Now for  the really hard bits 

Functional Functions 

A symptom of most usable programming languages is the existence of 
functions. Theoretically, functions provide the ability to break your code into 
reusable, logical compartments that are the by product of top-down design.  In 
practice, they vastly improve the readability of shell programs, making it easier 
to modify and debug them. 

An alternative to functions is the grouping of code into separate shell scripts 
and calling these from your program.  This isn’t as efficient as functions, as 
functions are executed in the same process that they were called from; however 
other shell programs are launched in a separate process space - this is 
inefficient on memory and CPU resources. 

You may have noticed that our scanit program has grown to around 30 lines 
of code.  While this is quite manageable, we will make some major changes 
later that really require the "modular" approach of functions. 

Shell functions are declared as: 

function_name() 
{ 
  somecommands 
} 



85321, Systems Administration Chapter 8:  Shell Programming 

David Jones (20.01.00) Page 216 

Functions are called by: 

function_name parameter_list 

YES!  Shell functions support parameters.  $1 to $9 represent the first nine 
parameters passed to the function and $* represents the entire parameter list.  
The value of $0 isn’t changed.  For example: 

#!/bin/bash 
# FILE:         catfiles 
 
catfile() 
{ 
  for file in $* 
  do 
    cat $file 
  done 
} 
 
FILELIST=‘ls $1‘ 
cd $1 
 
catfile $FILELIST 

This is a highly useless example (cat * would do the same thing) but you 
can see how the "main" program calls the function. 

local 

Shell functions also support the concept of declaring "local" variables.  The 
local command is used to do this.  For example: 

#!/bin/bash 
 
testvars() 
{ 
  local localX="testvars localX" 
  X="testvars X" 
  local GlobalX="testvars GlobalX" 
  echo "testvars: localX= $localX X= $X GlobalX= $GlobalX" 
} 
 
X="Main X" 
GlobalX="Main GLobalX" 
echo "Main 1: localX= $localX X= $X GlobalX= $GlobalX" 
 
testvars 
 
echo "Main 2: localX= $localX X= $X GlobalX= $GlobalX" 

The output looks like: 
Main 1: localX=  X= Main X GlobalX= Main GLobalX 

testvars: localX= testvars localX X= testvars X GlobalX= testvars GlobalX 

Main 2: localX=  X= testvars X GlobalX= Main GLobalX 



85321, Systems Administration Chapter 8:  Shell Programming 

David Jones (20.01.00) Page 217 

The return trip 

After calling a shell function, the value of $? is set to the exit status of the last 
command executed in the shell script.  If you want to explicitly set this, you 
can use the return command: 

return n 

(Where n is a number) 

This allows for code like: 

if function1 
then 
  do_this 
else 
  do_that 
fi 

For example, we can introduce our first function into our scanit program by 
placing our datafile tests into a function: 

#!/bin/bash 
# FILE:  scanit 
# 
 
check_data_files() 
{ 
  if [ -r netwatch -a -r netnasties ] 
  then 
    return 0 
  else 
    return 1 
  fi 
} 
 
# Main Program 
 
if check_data_files 
then 
  echo "Datafiles found" 
else 
  echo "One of the datafiles missing - exiting" 
  exit 1 
fi 
 
# our other work... 

Difficult and not compulsory 
The following section (up to the section titled "Bugs and Debugging") is not 
compulsory for students studying 85321. 

Recursion: (see "Recursion") 

Shell programming even supports recursion.  Typically, recursion is used to 
process tree-like data structures - the following example illustrates this: 



85321, Systems Administration Chapter 8:  Shell Programming 

David Jones (20.01.00) Page 218 

#!/bin/bash  
# FILE:  wctree 
 
wcfiles() 
{ 
  local BASEDIR=$1  # Set the local base directory 
  local LOCALDIR=‘pwd‘ # Where are we? 
  cd $BASEDIR   # Go to this directory (down) 
  local filelist=‘ls‘  # Get the files in this directory 
  for file in $filelist 
  do 
    if [ -d $file ]  # If we are a directory, recurs 
    then 
      # we are a directory 
      wcfiles "$BASEDIR/$file" 
    else 
      fc=‘wc -w < $file‘ # do word count and echo info 
      echo "$BASEDIR/$file $fc words" 
    fi 
  done 
  cd $LOCALDIR  # Go back up to the calling directory 
} 
 
if [ $1 ]   # Default to . if no parms 
then 
  wcfile $1  
else 
  wcfile "." 
fi 

Exercise 

8.12. What does the wctree program do?  Why are certain variables 
declared as local?  What would happen if they were not?  Modify the 
program so it will only "recurs" 3 times. 
 
EXTENSION:  There is actually a UNIX command that will do the 
same thing as this shell script  - what is it?  What would be the 
command line?  (Hint:  man find) 

wait’ing and trap’ing 

So far we have only examined linear, single process shell script examples.  
What if you want to have more than one action occurring at once?  As you are 
aware, it is possible to launch programs to run in the background by placing an 
ampersand behind the command, for example: 

runcommand & 

You can also do this in your shell programs.  It is occasionally useful to send a 
time consuming task to the background and proceed with your processing.  An 
example of this would be a sort on a large file: 

sort $largefile > $newfile & 
do_a_function 
do_another_funtion $newfile 



85321, Systems Administration Chapter 8:  Shell Programming 

David Jones (20.01.00) Page 219 

The problem is, what if the sort hadn’t finished by the time you wanted to use 
$newfile?  The shell handles this by providing wait : 

sort $largefile > $newfile & 
do_a_function 
wait 
do_another_funtion $newfile 

When wait is encountered, processing stops and "waits" until the child 
process returns, then proceeds on with the program.  But what if you had 
launched several processes in the background?  The shell provides the shell 
variable $! (the PID of the child process launched) which can be given as a 
parameter to wait - effectively saying "wait for this PID".  For example: 

sort $largefile1 > $newfile1 & 
$SortPID1=$! 
sort $largefile2 > $newfile2 & 
$SortPID2=$! 
sort $largefile3 > $newfile3 & 
$SortPID3=$! 
do_a_function 
wait $SortPID1 
do_another_funtion $newfile1 
wait $SortPID2 
do_another_funtion $newfile2 
wait $SortPID3 
do_another_funtion $newfile3 

Another useful command is trap.  trap works by associating a set of 
commands with a signal from the operating system.  You will probably be 
familiar with: 

kill -9 PID 

which is used to kill a process.  This command is in fact sending the signal "9" 
to the process given by PID.  Available signals are shown in Table 8.7. 

While you can’t actually trap signal 9, you can trap the others.  This is useful in 
shell programs when you want to make sure your program exits gracefully in 
the event of a shutdown (or some such event) (often you will want to remove 
temporary files the program has created).  The syntax of using trap is: 

trap commands signals 

For example: 

trap "rm /tmp/temp.$$" 1 2 

will trap signals 1 and 2 - whenever these signals occur, processing will be 
suspended and the rm command will be executed. 

You can also list every trap’ed signal by issuing the command: 

trap  

To "un-trap" a signal, you must issue the command: 

trap "" signals 



85321, Systems Administration Chapter 8:  Shell Programming 

David Jones (20.01.00) Page 220 

 

Signal Meaning 

0 Exit from the shell 

1 Hangup 

2 Interrupt 

3 Quit 

4 Illegal Instruction 

5 Trace trap 

6 IOT instruction 

7 EMT instruction 

8 Floating point exception 

10 Bus error 

12 Bad argument 

13 Pipe write error 

14 Alarm 

15 Software termination signal 

T a b l e  8 . 7   
U N I X  s i g n a l s  

(Taken from "UNIX Shell Programming" Kochan et al) 

The following is a somewhat clumsy form of IPC (Inter-Process 
Communication) that relies on trap and wait: 

#!/bin/bash 
# FILE:   saymsg 
# USAGE: saymsg <create number of children> [total number of  
#        children] 
 
readmsg() 
{ 
  read line < $$ # read a line from the file given by the PID 
  echo "$ID - got $line!" # of my *this* process ($$) 
  if [ $CHILD ] 
  then 
    writemsg $line # if I have children, send them message 
  fi 
} 
 
writemsg() 
{ 
  echo $* > $CHILD # Write line to the file given by PID 
  kill -1 $CHILD  # of my child.  Then signal the child. 
} 
 
stop() 
{ 
  kill -15 $CHILD  # tell my child to stop 
  if [ $CHILD ] 



85321, Systems Administration Chapter 8:  Shell Programming 

David Jones (20.01.00) Page 221 

  then 
    wait $CHILD  # wait until they are dead 
    rm $CHILD   # remove the message file 
  fi 
  exit 0 
} 
 
 
# Main Program 
 
if [ $# -eq 1 ] 
then 
  NUMCHILD=‘expr $1 - 1‘ 
  saymsg $NUMCHILD $1 & # Launch another child 
  CHILD=$! 
  ID=0 
  touch $CHILD   # Create empty message file 
  echo "I am the parent and have child $CHILD"  
else 
  if [ $1 -ne 0 ]  # Must I create children? 
  then 
    NUMCHILD=‘expr $1 - 1‘    # Yep, deduct one from the number 
    saymsg $NUMCHILD $2 & # to be created, then launch them 
    CHILD=$! 
    ID=‘expr $2 - $1‘ 
    touch $CHILD  # Create empty message file 
    echo  "I am $ID and have child $CHILD" 
  else 
    ID=‘expr $2 - $1‘  # I don’t need to create children 
    echo "I am $ID and am the last child" 
  fi 
fi 
 
trap "readmsg" 1  # Trap the read signal 
trap "stop" 15   # Trap the drop-dead signal 
 
if [ $# -eq 1 ]  # If I have one parameter, 
then    # then I am the parent - I just read 
  read BUFFER   # STDIN and pass the message on 
  while [ "$BUFFER" ] 
  do 
    writemsg $BUFFER 
    read BUFFER 
  done 
  echo "Parent - Stopping" 
  stop 
else    # Else I am the child who does nothing - 
  while true   # I am totally driven by signals. 
  do 
    true 
  done 
fi 

So what is happening here?  It may help if you look at the output: 

psyche:~/sanotes [david@faile david]$ saymsg 3  
I am the parent and have child 8090 
I am 1 and have child 8094 
I am 2 and have child 8109 
I am 3 and am the last child 
this is the first thing I type 
1 - got this is the first thing I type! 



85321, Systems Administration Chapter 8:  Shell Programming 

David Jones (20.01.00) Page 222 

2 - got this is the first thing I type! 
3 - got this is the first thing I type! 
 
Parent - Stopping       
 
psyche:~/sanotes [david@faile david]$  

Initially, the parent program starts, accepting a number of children to create.  
The parent then launches another program, passing it the remaining number of 
children to create and the total number of children. This happens on every 
launch of the program until there are no more children to launch.   

From this point onwards the program works rather like Chinese whispers - the 
parent accepts a string from the user which it then passes to its child by 
sending a signal to the child - the signal is caught by the child and readmsg is 
executed.  The child writes the message to the screen, then passes the message 
to its child (if it has one) by signalling it and so on and so on.  The messages 
are passed by being written to files - the parent writes the message into a file 
named by the PID of the child process. 

When the user enters a blank line, the parent process sends a signal to its child 
- the signal is caught by the child and stop is executed.  The child then sends 
a message to its child to stop, and so on and so on down the line.  The parent 
process can’t exit until all the children have exited. 

This is a very contrived example - but it does show how processes (even at a 
shell programming level) can communicate.  It also demonstrates how you can 
give a function name to trap (instead of a command set). 

Exercise 

8.13. saymsg is riddled with problems - there isn’t any checking on the 
parent process command line parameters (what if there wasn’t any?) 
and it isn’t very well commented or written - make modifications to fix 
these problems. What other problems can you see?  
 
EXTENSION : Fundamentally saymsg isn’t implementing very safe 
inter-process communication - how could this be fixed?  Remember, 
one of the main problems concerning IPC is the race condition - could 
this happen?   

Bugs and Debugging 
If by now you have typed every example program in, completed every exercise 
and have not encountered one single error then you are a truly amazing person.  
However, if you are like me, you would have made at least 70 billion mistakes/ 
typos or TSE’s (totally stupid errors) - and now I tell you the easy way to find 
them! 



85321, Systems Administration Chapter 8:  Shell Programming 

David Jones (20.01.00) Page 223 

Method 1 - set 

Issuing the truly inspired command of: 

set -x 

within your program will do wonderful things.  As your program executes, 
each code line will be printed to the screen - that way you can find your 
mistakes, err, well, a little bit quicker.  Turning tracing off is a good idea once 
your program works - this is done by: 

set +x 

Method 2 - echo 

Placing a few echo statements in your code during your debugging is one of 
the easiest ways to find errors - for the most part this will be the quickest way 
of detecting if variables are being set correctly. 

Very Common Mistakes 

$VAR=‘ls‘   

This should be VAR=‘ls‘.  When setting the value of a shell variable you 
don’t use the $ sign. 

read $BUFFER   

The same thing here.  When setting the value of a variable you don’t use the $ 
sign. 

VAR=‘ls -al"   

The second ‘ is missing 

if [ $VAR ]  
then 
    echo $VAR 
fi  

Haven’t specified what is being tested here.  Need to refer to the contents of 
Tables 8.2 through 8.5 

if [ $VAR -eq $VAR2 ] 
then 
   echo $VAR 
fi 

If $VAR and $VAR2 are strings then you can’t use –eq to compare their 
values.  You need to use =. 

if [ $VAR = $VAR2 ] then 
  echo $VAR 
fi 

The then must be on a separate line. 



85321, Systems Administration Chapter 8:  Shell Programming 

David Jones (20.01.00) Page 224 

And now for  the really really hard bits 

Writing good shell programs 

We have covered most of the theory involved with shell programming, but 
there is more to shell programming than syntax.  In this section, we will 
complete the scanit program, examining efficiency and structure 
considerations. 

scanit currently consists of one chunk of code with one small function.  In 
its current form, it doesn’t meet the requirements specified: 

 "...you will produce a report of people accessing restricted sites, exactly 
which sites and the number of times they visited them." 

Our code, as it is, looks like: 

#!/bin/bash 
# FILE:  scanit 
# 
 
check_data_files() 
{ 
  if [ -r netwatch -a -r netnasties ] 
  then 
    return 0 
  else 
    return 1 
  fi 
} 
 
# Main Program 
 
if check_data_files 
then 
  echo "Datafiles found" 
else 
  echo "One of the datafiles missing - exiting" 
  exit 1 
fi 
 
for checkuser in $* 
do 
  while read buffer 
  do 
    while read checksite 
    do 
      user=‘echo $buffer | cut -d" " -f1‘ 
      site=‘echo $buffer | cut -d" " -f2‘ 
      if [ "$user" = "$checkuser" -a "$site" = "$checksite" ] 
      then 
        echo "$user visited the prohibited site $site" 
      fi 
    done < netnasties 
  done < netwatch     
done 

At the moment, we simply print out the user and site combination - no count 
provided.  To be really effective, we should parse the file containing the 



85321, Systems Administration Chapter 8:  Shell Programming 

David Jones (20.01.00) Page 225 

user/site combinations (netwatch), register and user/prohibited site 
combinations and then when we have all the combinations and count per 
combination, produce a report.  Given our datafile checking function, the 
pseudo code might look like: 

if data_files_exist 
  ... 
else 
  exit 1 
fi 
check_netwatch_file 
produce_report 
exit 

It might also be an idea to build in a "default" - if no username(s) are given on 
the command line, we go and get all the users from the /etc/passwd file: 

f [ $1 ] 
then 
  the_user_list=$* 
else 
  get_passwd_users 
fi    

Exercise 

8.14. Write the shell function get_passwd_users.  This function goes 
through the /etc/passwd file and creates a list of usernames.  (Hint: 
username is field one of the password file, the delimiter is ":") 

eval the wonderful! 

The use of eval is perhaps one of the more difficult concepts in shell 
programming to grasp is the use of eval.  eval effectively says “parse (or 
execute) the following twice”.  What this means is that any shell variables that 
appear in the string are “substituted” with their real value on the first parse, 
then used as-they-are for the second parse. 

The use of this is difficult to explain without an example, so we’ll refer back to 
our case study problem. 

The real challenge to this program is how to actually store a count of the user 
and site combination.  The following is how I'd do it: 

checkfile() 
{ 
  # Goes through the netwatch file and saves user/site 
  # combinations involving sites that are in the "restricted" 
  # list 
 
  while read buffer 
  do 
    username=‘echo $buffer | cut -d" " -f1‘ # Get the username 
    # Remove “.”’s from the string 
    site=`echo $buffer | cut -d" " -f2 | sed s/\\\.//g`  
    for checksite in $badsites  
    do 
      checksite=`echo $checksite | sed s/\\\.//g`  



85321, Systems Administration Chapter 8:  Shell Programming 

David Jones (20.01.00) Page 226 

      # Do this for the compare sites 
      if [ "$site" = "$checksite" ]  
      then 
        usersite="$username$checksite"     
        # Does the VARIABLE called $usersite exist? Note use of eval 
        if eval [ \$$usersite ]   
        then    
          eval $usersite=\‘expr \$$usersite + 1\‘     
        else          
          eval $usersite=1    
        fi 
      fi 
    done 
  done < netwatch 
} 

There are only two really tricky lines in this function: 

1. site=‘echo $buffer | cut -d" " -f2 | sed s/\\\.//g‘ 

Creates a variable site; if buffer (one line of netwatch) contained 

rabid.dog.com 

then site would become: 

rabiddogcom 

The reason for this is because of the variable usersite: 

usersite="$username$checksite" 

What we are actually creating is a variable name, stored in the variable usersite 
- why (you still ask) did we remove the "."’s?  This becomes clearer when we 
examine the second tricky line: 

2. eval $usersite=\‘expr \$$usersite + 1\‘ 

Remember eval "double" or "pre" parses a line - after eval has been run, you 
get a line which looks something like: 

# $user="jamiesobrabiddogcom" 
jamiesobrabiddogcom=‘expr $jamiesobrabiddogcom + 1‘ 

What should become clearer is this: the function reads each line of the 
netwatch file.  If the site in the netwatch file matches one of the sites 
stored in netnasties file (which has been cat’ed into the variable 
badsites) then we store the user/site combination.  We do this by first 
checking if there exists a variable by the name of the user/site combination - if 
one does exist, we add 1 to the value stored in the variable.  If there wasn’t a 
variable with the name of the user/site combination, then we create one by 
assigning it to "1". 

At the end of the function, we should have variables in memory for all the 
user/prohibited site combinations found in the netwatch file, something like: 

jamiesobmucusslimecom=3 
tonsloyemucusslimecom=1 
tonsloyeboysfunnetcomfr=3 
tonsloyewarezundergr=1    
rootwarzundergr=4 



85321, Systems Administration Chapter 8:  Shell Programming 

David Jones (20.01.00) Page 227 

Note that this would be the case even if we were only interested in the users 
root and jamiesob.  So why didn’t we check in the function if the user in 
the netwatch file was one of the users we were interested in?  Why should 
we!?  All that does is adds an extra loop: 

for every line in the file 
  for every site 
     for every user 
     do check 
     create variable if user and if site in userlist,  
     badsitelist 

whereas all we have now is 

for every line in the file 
    for every site 
       create variable if site in badsitelist 

We are still going to have to go through every user/badsite combination 
anyway when we produce the report - why add the extra complexity? 

You might also note that there is minimal file IO - datafiles are only read 
ONCE - lists (memory structures) may be read more than once. 

Exercise 

8.15. Given the checksite function, write a function called 
produce_report that accepts a list of usernames and finds all 
user/badsite combinations stored by checkfile.  This function 
should echo lines that look something like: 
 
jamiesob: mucus.slime.com 3 
tonsloye: mucus.slime.com 1 
tonsloye: xboys.funnet.com.fr 3 
tonsloye: warez.under.gr 1 

Step-by-step 
In this section, we will examine a complex shell programming problem and 
work our way through the solution. 

The problem 

This problem is an adaptation of the problem used in the 1997 shell 
programming assignment for systems administration: 

Problem Definition 

Your department'’s FTP server provides anonymous FTP access to the /pub 
area of the filesystem -  this area contains subdirectories (given by unit code) 
which contain resource materials for the various subjects offered.  You suspect 
that this service isn't being used any more with the advent of the WWW, 
however, before you close this service and use the file space for something 
more useful, you need to prove this. 



85321, Systems Administration Chapter 8:  Shell Programming 

David Jones (20.01.00) Page 228 

What you require is a program that will parse the FTP logfile and produce 
usage statistics on a given subject.  This should include: 

• Number of accesses per user 

• Number of bytes transferred 

• The number of  machines which have used the area. 

The program will probably be called from other scripts.  It should accept (from 
the command line) the subject (given by the subject code) that it is to examine, 
followed by one or more commands.  Valid  commands will consist of: 

• USERS - get a user and access count listing 

• BYTES - bytes transmitted for the subject 

• HOSTS - number of unique machines who have used the area 

Background information 

A cut down version of the FTP log will be examined by our program - it will 
consist of: 

remote host name 
file size in bytes 
name of file 
local username or, if guest, ID string given (anonymous FTP password) 

For example: 
aardvark.com  2345  /pub/85349/lectures.tar.gz  flipper@aardvark.com  
138.77.8.8  112  /pub/81120/cpu.gif   sloth@topaz.cqu.edu.au 

The FTP logfile will be called /var/log/ftp.log - we need not concern 
ourselves how it is produced (for those that are interested - look at man ftpd 
for a description of the real log file). 

Anonymous FTP “usernames” are recorded as whatever the user types in as the 
password - while this may not be accurate, it is all we have to go on. 

We can assume that all directories containing subject material branch off the 
/pub directory, eg. 

/pub/85321 
/pub/81120 

Expected interaction 

The following are examples of interaction with the program (scanlog): 

[david@faile david]$ scanlog 85321 USERS  
jamiesob@jasper.cqu.edu.au 1 
b.spice@sworld.cqu.edu.au 22 
jonesd 56 
 
[david@faile david]$ scanlog 85321 BYTES  
2322323 
 
[david@faile david]$ scanlog 85321 HOSTS  
5 
 



85321, Systems Administration Chapter 8:  Shell Programming 

David Jones (20.01.00) Page 229 

[david@faile david]$ scanlog 85321 BYTES USERS 
2322323 
jamiesob@jasper.cqu.edu.au 1 
b.spice@sworld.cqu.edu.au 22 
jonesd 56 

Solving the problem 

How would you solve this problem?  What would you do first? 

Break it up 

What does the program have to do?  What are its major parts?  Let’s look at 
the functionality again - our program must: 

• get a user and access count listing 

• produce a the byte count on files transmitted for the subject 

• list the number unique machines who have used the area and how many 
times 

To do this, our program must first: 

• Read parameters from the command line, picking out the subject we are 
interested in 

• go through the other parameters one by one, acting on each one, calling the 
appropriate function 

• Terminate/clean up 

So, this looks like a program containing three functions.  Or is it? 

Look at the simple case first 

It is often easier to break down a problem by walking through a simple case 
first. 

Lets imagine that we want to get information about a subject - let'’s use the 
code 85321.  At this stage, we really  don’t care what the action is.  What 
happens? 

The program starts. 

• We extract the first parameter from the command line.  This is our subject.  
We might want to check if there is a first parameter - is it blank? 

• Since we are only interested in this subject, we might want to go through 
the FTP log file and extract those entries we're interested in and keep this 
information in a temporary file.  Our other option is to do this for every 
different “action” - this would probably be inefficient. 

• Now, we want to go through the remaining parameters on the command 
line and act on each one.  Maybe we should signal a error if we don’t 
understand the action? 

• At the end of our program, we should remove any temporary files we use. 



85321, Systems Administration Chapter 8:  Shell Programming 

David Jones (20.01.00) Page 230 

Pseudo Code 

If we were to pseudo code the above steps, we’d get something like: 

# Check to see if the first parameter is blank 
if  first_parameter = ""  
then 
  echo "No unit specified" 
  exit  
fi 
 
# Find all the entries we’re interested in, place this in a TEMPFILE 
# Right - for every other parameter on the command line, we perform  
# some 
 
for ACTION in other_parameters 
do 
  # Decide if it is a valid action - act on it or give a error 
done 
 
# Remove Temp file 
rm TEMPFILE 
 
 
# Let’s code this: 
if [ "$1" = "" ] 
then 
  echo "No unit specified" 
  exit 1 
fi 
 
# Remove $1 from the parm line 
 
UNIT=$1 
shift 
 
# Find all the entries we're interested in 
grep "/pub/$UNIT" $LOGFILE > $TEMPFILE 
 
# Right - for every other parameter on the command line, we perform 
some 
for ACTION in $@ 
do 
  process_action "$ACTION" 
done 
 
# Remove Temp file 
rm $TEMPFILE 

Ok, a few points to note: 

• Notice the use of the variables LOGFILE and TEMPFILE?  These would 
have to be defined somewhere above the code segment. 

• We remove the first parameter from the command line and assign it to 
another variable.  We do this using the shift command. 

• We use grep to find all the entries in the original log file that refer to the 
subject we are interested in.  We store these entries in a temporary file. 



85321, Systems Administration Chapter 8:  Shell Programming 

David Jones (20.01.00) Page 231 

• The use of $@ in the loop to process the remaining parameters is important.  
Why did we use it?  Why not $* ?  Hint:  “1 2 3 4 5 6” isn't “1” “2” “3” 
“4” “5” “6” is it? 

• We've invented a new function, process_action - we will use this 
to work out what to do with each action.  Note that we are passing the 
function a parameter.  Why are we enclosing it in quotes?  Does it matter if 
we don’t?  Actually, in this case, it doesn't matter if we call the function 
with the parameter in quotes or not, as our parameters are expected to be 
single words.  However, what if we allowed commands like: 
 
find host 138.77.3.4  
 
If we passed this string to a function (without quotes), it would be 
interpreted as: 
 
$1=“find” $2=“host” $3=“138.77.3.4” 
 
This wouldn’t be entirely what we want - so, we 
enclose the string in quotes - producing: 
 
$1=“find host 138.77.3.4”  
 

As we mentioned, in this case, we have single word 
commands, so it doesn’t matter, however, always try 
to look ahead for problems - ask yourself the 
figurative question - “Is my code going to work in 
the rain?”.   

Expand function process_action 

We have a function to work on - process_action.  Again, we should 
pseudo code it, then implement it.  Wait!  We haven’t first thought about what 
we want it to do - always a good idea to think before you code! 

This function must take a parameter, determine if it is a valid action, then 
perform some action on it.  It is an invalid action, then we should signal an 
error. 

Let’s try the pseudo code first: 

process_action() 
  { 
 
    # Now, Check what we have 
    case Action in 
      BYTES then do a function to get bytes  
      USERS then do a function to get a user list  
      HOSTS then do a function to get an access count  
      Something Else then echo "Unknown command $theAction"  
    esac 
 
  } 

Right - now try the code: 



85321, Systems Administration Chapter 8:  Shell Programming 

David Jones (20.01.00) Page 232 

process_action() 
  { 
    # Translate to upper case 
    theAction=‘echo $1 | tr [a-z] [A-Z]‘ 
 
    # Now, Check what we have 
    case $theAction in 
      USERS) getUserList ;; 
      HOSTS) getAccessCount ;; 
      BYTES) getBytes ;; 
      *) echo "Unknown command $theAction" ;; 
    esac 
 
  } 

Some comments on this code: 

• Note that we translate the “action command” (for example “bytes” , 
“users”) into upper case.  This is a nicety - it just means that we’ll pick up 
every typing variation of the action. 

• We use the case command to decide what to do with the action.  We could 
have just as easily used a series of IF-THEN-ELSE-ELIF-FI 
statements - this becomes horrendous to code and read after about three 
conditions so case is a better option. 

• As you will see, we've introduced calls to functions for each command - 
this again breaks to code up into bite size pieces (excuse the pun ;) to code.  
This follows the top-down design style. 

• We will now expand each function. 

Expand Function getUserList 

Now might be a good time to revise what was required of our program - in 
particular, this function. 

We need to produce a listing of all the people who have accessed files relating 
to the subject of interest and how many times they've accessed files.   

Because we've separated out the entries of interest from the log file, we need 
no longer concern ourselves with the actual files and if they relate to the 
subject.  We now are just interested in the users. 

Reviewing the log file format: 
aardvark.com  2345  /pub/85349/lectures.tar.gz  flipper@aardvark.com 

138.77.8.8  112  /pub/81120/cpu.gif    sloth@topaz.cqu.edu.au 

We see that user information is stored in the fourth field.  If we pseudo code 
what we want to do, it would look something like: 

for every_user_in the file 
do 
  go_through_the_file_and_count_occurences 
  print this out 
done 

Expanding this a bit more, we get: 



85321, Systems Administration Chapter 8:  Shell Programming 

David Jones (20.01.00) Page 233 

extract_users_from_file 
for user in user_list 
do 
  count = 0 
  while read log_file 
  do 
    if user = current_entry 
    then 
      count = count + 1 
    fi 
  done 
  echo user count 
done  

Let’s code this: 

getUserList() 
  { 
    cut -f4 $TEMPFILE | sort > $TEMPFILE.users 
    userList=‘uniq $TEMPFILE.users‘ 
 
    for user in $userList 
    do 
    { 
      count=0 
      while read X 
      do 
        if echo $X | grep $user > /dev/null 
        then 
          count=‘expr $count + 1‘ 
        fi 
      done 
     } < $TEMPFILE 
    echo $user $count 
    done 
 
    rm $TEMPFILE.users 
  } 

Some points about this code: 

• The first cut extracts a user list and places it in a temp file.  A unique list of 
users is then created and placed into a variable. 

• For every user in the list, the file is read through and each line searched for 
the user string.  We pipe the output into /dev/null. 

• If a match is made, count is incremented. 

• Finally the user/count combination is printed. 

• The temporary file is deleted. 

Unfortunately, this code totally sucks.  Why? 

There are several things wrong with the code, but the most outstanding 
problem is the massive and useless looping being performed - the while loop 
reads through the file for every user.  This is bad.  While loops within shell 
scripts are very time consuming and inefficient  - they are generally avoided if, 
as in this case, they can be.  More importantly, this script doesn't make use of 
UNIX commands which could simplify (and speed up!) our code.  Remember: 
don’t re-invent the wheel - use existing utilities where possible. 



85321, Systems Administration Chapter 8:  Shell Programming 

David Jones (20.01.00) Page 234 

Let’s try it again, this time without the while loop: 
getUserList() 
{ 
  cut -f4 $TEMPFILE | sort > $TEMPFILE.users # Get user list 
  userList=‘uniq $TEMPFILE.users‘ 
 
  for user in $userList    # for every user... 
  do 
    count=‘grep $user $TEMPFILE.users | wc -l‘ # count how many times they are 
    echo $user $count          # in the file 
  done 
 
  rm $TEMPFILE.users 
} 

Much better!  We've replaced the while loop with a simple grep command - 
however, there are still problems: 

We don’t need the temporary file 

Can we wipe out a few more steps? 

Next cut: 

getUserList() 
{ 
  userList=‘cut -f4 $TEMPFILE | sort | uniq‘ 
 
  for user in $userList 
  do 
    echo $user ‘grep $user $TEMPFILE | wc -l‘ 
  done 
} 

Beautiful! 

Or is it. 

What about: 

echo ‘cut-f4 $TEMPFILE | sort | uniq -c‘ 

This does the same thing...or does it?  If we didn't care what our output looked 
like, then this'd be ok - find out what's wrong with this code by trying it and 
the previous segment - compare the results.  Hint:  uniq -c produces a count 
of every sequential occurrence of an item in a list.  What would happen if we 
removed the sort?  How could we fix our output “problem”? 

Expand Function getAccessCount 

This function requires a the total number of unique hosts which have accessed 
the files.  Again, as we've already separated out the entries of interest into a 
temporary file, we can just concentrate on the hosts field (field number one). 

If we were to pseudo code this: 

create_unique_host list 
count = 0 
for host in host_list 
do  
   count = count + 1 
done 
echo count 



85321, Systems Administration Chapter 8:  Shell Programming 

David Jones (20.01.00) Page 235 

From the previous function, we can see that a direct translation from pseudo 
code to shell isn’t always efficient.  Could we skip a few steps and try the 
efficient code first?  Remember - we should try to use existing UNIX 
commands. 

How do we create a unique list?  The hint is in the word unique - the uniq 
command is useful in extracting unique listings.   

What are we going to use as the input to the uniq command?  We want a list 
of all hosts that accessed the files - the host is stored in the first field of every 
line in the file.  Next hint - when we see the word “field” we can immediately 
assume we're going to use the cut command.  Do we have to give cut any 
parameters?  In this case, no.  cut assumes (by default) that fields are 
separated by tabs - in our case, this is true.  However, if the delimiter was 
anything else, we'd have to use a “-d” switch, followed by the delimiter. 

Next step - what about the output from uniq?  Where does this go?  We said 
that we wanted a count of the unique hosts - another hint - counting usually 
means using the wc command.  The wc command (or word count command) 
counts characters, words and lines.  If the output from the uniq command was 
one host per line, then a count of the lines would reveal the number of unique 
hosts. 

So what do we have? 

cut –f1 
uniq 
wc -l 

Right - how do we get input and save output for each command? 

A first cut approach might be: 

cat $TEMPFILE | cut -f1 > $TEMPFILE.cut 
cat $TEMPFILE.cut | uniq > $TEMPFILE.uniq 
COUNT=`cat $TEMPFILE.uniq | wc -l` 
echo $COUNT 

This is very inefficient; there are several reasons for this: 

• We cat a file THREE times to get the count.  We don’t even have to use 
cat if we really try. 

• We use temp files to store results - we could use a shell variable (as in the 
second last line) but is there any need for this?  Remember, file IO is much 
slower than assignments to variables, which, depending on the situation, is 
slower again that using pipes. 

• There are four lines of code - this can be completed in one! 

So, removing these problems, we are left with: 

getAccessCount() 
  { 
    echo ‘cut -f1 $TEMPFILE | uniq | wc -l‘ 
  } 

How does this work? 

• The shell executes what's between ‘‘ and this is outputted by echo. 



85321, Systems Administration Chapter 8:  Shell Programming 

David Jones (20.01.00) Page 236 

• This command starts with the cut command - a common misconception is 
that cut requires input to be piped into it - however, cut works just as 
well by accepting the name of a file to work with.  The output from cut (a 
list of hosts) is piped into uniq. 

• uniq then removes all duplicate host from the list - this is piped into wc. 

• wc then counts the number of lines - the output is displayed. 

Expand Function getBytes 

The final function we have to write (Yes!  We are nearly finished) counts the 
total byte count of the files that have been accessed.  This is actually a fairly 
simple thing to do, but as you’ll see, using shell scripting to do this can be very 
inefficient. 

First, some pseudo code: 

total = 0 
while read line from file 
do 
  extract the byte field 
  add this to the total 
done 

echo total 

In shell, this looks something like: 

getBytes() 
  { 
    bytes=0 
    while read X 
    do 
      bytefield=‘echo $X | cut -f2‘ 
      bytes=‘expr $bytes + $bytefield‘ 
    done < $TEMPFILE 
    echo $bytes 
  } 

...which is very inefficient (remember:  looping is bad!).  In this case, every 
iteration of the loop causes three new processes to be created, two for the first 
line, one for the second - creating processes takes time! 

The following is a bit better: 

getBytes() 
  { 
    list=‘cut -f2  $TEMPFILE ‘ 
    bytes=0 
    for number in $list 
    do 
      bytes=‘expr $bytes + $number‘ 
    done 
 
    echo $bytes 
  } 

The above segment of code still has looping, but is more efficient with the use 
of a list of values which must be added up.  However, we can get smarter: 



85321, Systems Administration Chapter 8:  Shell Programming 

David Jones (20.01.00) Page 237 

getBytes() 
  { 
   numstr=‘cut -f2 $TEMPFILE | sed "s/$/ + /g"‘ 
   expr $numstr 0 
  } 

Do you see what we’ve done?  The cut operation produces a list of numbers, 
one per line.  When this is piped into sed, the end-of-line is substituted with  
“ + “  - note the spaces.  This is then combined into a single line string and 
stored in the variable numstr.  We then get the expr of this string - why do 
we put the 0 on the end? 

Two reasons: 

After the sed operation, there is an extra “+” on the end - for example, if the 
input was: 
 
2 
3 
4 
 
The output would be: 
 
2 + 
3 + 
4 + 
 
This, when placed in a shell variable, looks like: 
 
2 + 3 + 4 + 
 
...which when evaluated, gives an error.  Thus, placing a 0 at the end of the 
string matches the final “+” sign, and expr is happy 

What if there wasn’t a byte count?  What if there were no entries - expr 
without parameters doesn't work - expr with 0 does. 

So, is this the most efficient code? 

Within the shell, yes.  Probably the most efficient code would be a call to awk 
and the use of some awk scripting, however that is beyond the scope of this 
chapter and should be examined as a personal exercise. 

A final note about the variables 

Throughout this exercise, we've referred to $TEMPFILE and $LOGFILE.  
These variables should be set at the top of the shell script.  LOGFILE refers to 
the location of the FTP log.  TEMPFILE is the actual file used to store the 
entries of interest.  This must be a unique file and should be deleted at the end 
of the script.  It'd be an excellent idea to store this file in the /tmp directory 
(just in case your script dies and you leave the temp file laying around - /tmp 
is regularly cleaned out by the system) - it would be an even better idea to 



85321, Systems Administration Chapter 8:  Shell Programming 

David Jones (20.01.00) Page 238 

guarantee its uniqueness by including the process ID ($$) somewhere within 
its name: 

LOGFILE="/var/log/ftp.log" 
TEMPFILE="/tmp/scanlog.$$" 

The final program - a listing 

The following is the completed shell script - notice how short the code is (think 
of what it would be like if we hadn’t been pushing for efficiency!). 

#!/bin/sh 
# 
#  FILE:        scanlog 
#  PURPOSE:     Scan FTP log 
#  AUTHOR:      Bruce Jamieson 
#  HISTORY:     DEC 1997            Created 
# 
#  To do :      Truly astounding things. 
#               Apart from that, process a FTP log and produce stats 
 
#-------------------------- 
# globals 
 
LOGFILE="ftp.log" 
TEMPFILE="/tmp/scanlog.$$" 
 
# functions 
 
 
  #---------------------------------------- 
  # getAccessCount 
  # - display number of unique machines that have accessed the page 
 
  getAccessCount() 
  { 
    echo ‘cut -f1 $TEMPFILE  | uniq | wc -l‘ 
  } 
 
  #------------------------------------------------------- 
  # getUserList 
  # - display the list of users who have acessed this page 
 
  getUserList() 
  { 
    userList=‘cut -f4 $TEMPFILE | sort | uniq‘ 
 
    for user in $userList 
    do 
      echo $user ‘grep $user $TEMPFILE | wc -l‘ 
    done 
 
  } 
 
  #------------------------------------------------------- 
  # getBytes 
  # - calculate the amount of bytes transferred 
 
  getBytes() 
  { 



85321, Systems Administration Chapter 8:  Shell Programming 

David Jones (20.01.00) Page 239 

   numstr=‘cut -f2 $TEMPFILE | sed "s/$/ + /g"‘ 
   expr $numstr 0 
  } 
 
 
  #------------------------------------------------------ 
  # process_action 
  # Based on the passed string, calls one of three functions 
  # 
 
  process_action() 
  { 
    # Translate to upper case 
    theAction=‘echo $1 | tr [a-z] [A-Z]‘ 
 
    # Now, Check what we have 
    case $theAction in 
      BYTES) getBytes ;; 
      USERS) getUserList ;; 
      HOSTS) getAccessCount ;; 
      *) echo "Unknown command $theAction" ;; 
    esac 
 
  } 
 
 
#----  Main 
 
# 
 
if [ "$1" = "" ] 
then 
  echo "No unit specified" 
  exit 1 
fi 
 
UNIT=$1 
 
# Remove $1 from the parm line 
shift 
 
# Find all the entries we’re interested in 
grep "/pub/$UNIT" $LOGFILE > $TEMPFILE 
 
# Right - for every parameter on the command line, we perform some 
for ACTION in $@ 
do 
  process_action "$ACTION" 
done 
 
# Remove Temp file 
rm $TEMPFILE 
 
# We’re finished! 

Final notes 
Throughout this chapter we have examined shell programming concepts 
including: 



85321, Systems Administration Chapter 8:  Shell Programming 

David Jones (20.01.00) Page 240 

• variables 

• comments 

• condition statements 

• repeated action commands 

• functions 

• recursion 

• traps 

• efficiency, and 

• structure 

Be aware that different shells support different syntax - this chapter has dealt 
with bourne shell programming only.  As a final issue, you should at some 
time examine the Perl programming language as it offers the full functionality 
of shell programming but with added, compiled-code like features - it is often 
useful in some of the more complex system administration tasks. 

Review Questions 
8.1 

Write a function that equates the username in the scanit program with the 
user’s full name and contact details from the /etc/passwd file.  Modify 
scanit so its output looks something like: 

*** Restricted Site Report *** 
 
The following is a list of prohibited sites, users who have 
visited them and on how many occasions 
 
Bruce Jamieson x9999 mucus.slime.com 3 
Elvira Tonsloy x1111 mucus.slime.com 1 
Elvira Tonsloy x1111 xboys.funnet.com.fr 3 
Elvira Tonsloy x1111 warez.under.gr 1       

 

(Hint: the fifth field of the passwd file usually contains the full name and 
phone extension (sometimes)) 

8.2 

Modify scanit so it produces a count of unique user/badsite combinations 
like the following: 

*** Restricted Site Report *** 
 
The following is a list of prohibited sites, users who have 
visited them and on how many occasions 
 
Bruce Jamieson x9999 mucus.slime.com 3 
Elvira Tonsloy x1111 mucus.slime.com 1 



85321, Systems Administration Chapter 8:  Shell Programming 

David Jones (20.01.00) Page 241 

Elvira Tonsloy x1111 xboys.funnet.com.fr 3 
Elvira Tonsloy x1111 warez.under.gr 1       
 
4 User/Site combinations detected. 

8.3 

Modify scanit so it produces a message something like: 

There were no users found accessing prohibited sites! 
if there were no user/badsite combinations. 

References 
Kochan S.G. et al "UNIX Shell Programming" SAMS 1993, USA 

Jones, D  "Shell Programming" WWW Notes 

Newmarch, J  "Shell Programming" 
http://pandonia.canberra.edu.au/OS/13_1.html 

Source of scanit 

#!/bin/bash 
# 
# AUTHOR: Bruce Jamieson 
# DATE:  Feb 1997 
# PROGRAM: scanit 
# PURPOSE: Program to analyse the output from a network 
#  monitor.  " scanit " accepts a list of users to 
#  and a list of "restricted" sites to compare 
#  with the output from the network monitor. 
# 
# FILES: scanit   shell script 
#  netwatch output from network monitor 
#  netnasties restricted site file 
# 
# NOTES: This is a totally made up example - the names 
#  of persons or sites used in data files are  
#  not in anyway related to reality - any 
#  similarity is purely coincidental :) 
# 
# HISTORY: bleak and troubled :) 
# 
 
checkfile() 
{ 
  # Goes through the netwatch file and saves user/site 
  # combinations involving sites that are in the "restricted" 
  # list 
 
  while read buffer 
  do 
    username=‘ echo  $buffer | cut -d" " -f1‘ 
    site=‘ echo  $buffer | cut -d" " -f2 | sed s/\\\.//g‘ 
    for checksite in $badsites 
    do 
      checksite=‘ echo  $checksite | sed s/\\\.//g‘ 



85321, Systems Administration Chapter 8:  Shell Programming 

David Jones (20.01.00) Page 242 

      # echo  $checksite $site 
      if [ "$site" = "$checksite" ] 
      then 
        usersite="$username$checksite" 
        if eval [ \$$usersite ] 
        then 
   eval $usersite=\‘expr \$$usersite + 1\‘ 
        else          
          eval $usersite=1 
        fi 
      fi 
    done 
  done < netwatch 
} 
 
produce_report() 
{ 
  # Goes through all possible combinations of users and 
  # restricted sites - if a variable exists with the combination, 
  # it is reported 
  for user in $* 
  do 
    for checksite in $badsites 
    do 
      writesite=‘ echo  $checksite‘ 
      checksite=‘ echo  $checksite | sed s/\\\.//g‘ 
      usersite="$user$checksite" 
      if eval [ \$$usersite ]  
      then 
        eval echo  "$user: $writesite  \$$usersite" 
        usercount=‘expr $usercount + 1‘ 
      fi     
    done 
  done  
} 
 
get_passwd_users() 
{ 
  # Creates a user list based on the /etc/passwd file 
 
  while read buffer 
  do 
    username=‘ echo  $buffer | cut -d":" -f1‘ 
    the_user_list=‘ echo  $username $the_user_list‘ 
  done  < /etc/passwd 
} 
 
check_data_files() 
{ 
  if [ -r netwatch -a -r netnasties ] 
  then 
    return 0 
  else 
    return 1 
  fi 
} 
 
# Main Program 
# Uncomment the next line for debug mode 
#set -x 
 



85321, Systems Administration Chapter 8:  Shell Programming 

David Jones (20.01.00) Page 243 

 
if check_data_files 
then 
  echo  "Datafiles found" 
else 
  echo  "One of the datafiles missing - exiting" 
  exit 1 
fi 
 
usercount=0 
badsites=‘cat netnasties‘ 
 
if [ $1 ] 
then 
  the_user_list=$*  
else 
  get_passwd_users 
fi 
echo 
echo  "*** Restricted Site Report ***"  
echo 
echo  The following is a list of prohibited sites, users who have 
echo  visited them and on how many occasions 
echo 
checkfile 
produce_report $the_user_list 
echo 
if [ $usercount -eq 0 ] 
then 
  echo  "There were no users found accessing prohibited sites!" 
else 
  echo  "$usercount prohibited user/site combinations found." 
fi 
echo 
echo 
 
# END scanit  



85321, Systems Administration Chapter 9:  Users 

David Jones (20.01.00) Page 244 

Chapter  
Users 

Introduction  
Before anyone can use your system they must have an account. This chapter 
examines user accounts and the responsibilities of the Systems Administrators 
with regards to accounts. By the end of this chapter you should  

• be aware of the process involved in creating and removing user accounts,  

• be familiar with the configuration files that UNIX uses to store information 
about accounts,  

• know what information you must have to create an account,  

• understand the implications of choosing particular usernames, user ids and 
passwords,  

• be aware of special accounts including the root account and the 
implications of using the root account,  

• have been introduced to a number of public domain tools that help with 
account management. 

Other  Resources 
Other material which discusses user and authentication related material 
includes 

• Guides 
The Linux Installation and Getting Started Guide has a section (4.6) on 
user management.  The Linux Systems Administrators Guide’s chapter 9 
also discusses managing user accounts.  The Linux Administration Made 
Easy Guide also provides some discussion of account related issues in its 
chapter 6, General System Administration Issues. 

• The RedHat 6.0 Guides also mention account management issues. 

What is a UNIX account? 
A UNIX account is a collection of logical characteristics that specify who the 
user is, what the user is allowed to do and where the user is allowed to do it. 
These characteristics include a  

• login (or user) name,  

• password,  

• numeric user identifier or UID,  



85321, Systems Administration Chapter 9:  Users 

David Jones (20.01.00) Page 245 

• a default numeric group identifier or GID, 
Many accounts belong to more than one group but all accounts have one 
default group.  

• home directory,  

• login shell,  

• possibly a mail alias,  

• mail file, and  

• collection of startup files.  

Login names  

The account of every user is assigned a unique login (or user) name. The 
username uniquely identifies the account for people. The operating system 
uses the user identifier number (UID) to uniquely identify an account. The 
translation between UID and the username is carried out reading the 
/etc/passwd file ( /etc/passwd  is introduced below).  

Login name format  

On a small system, the format of login names is generally not a problem since 
with a small user population it is unlikely that there will be duplicates. 
However on a large site with hundreds or thousands of users and multiple 
computers, assigning a login name can be a major problem. With a larger 
number of users it is likely that you may get a number of people with names 
like David Jones, Darren Jones.  

The following is a set of guidelines. They are by no means hard and fast rules 
but using some or all of them can make life easier for yourself as the Systems 
Administrator, or for your users.  

• unique 
This means usernames should be unique not only on the local machine but 
also across different machines at the same site. A login name should 
identify the same person and only one person on every machine on the site. 
This can be very hard to achieve at a site with a large user population 
especially if different machines have different administrators. 
 
The reason for this guideline is that under certain circumstances it is 
possible for people with the same username to access accounts with the 
same username on different machines.  There is an increasing trend for 
global logons.  One username/password will get users into all of the 
systems they need for a given organisation.  Not quite there but getting 
there. 

• up to 8 characters  
UNIX will ignore or disallow login names that are longer. Dependent on 
which platform you are using.  

• Lowercase  
Numbers and upper case letters can be used. Login names that are all upper 



85321, Systems Administration Chapter 9:  Users 

David Jones (20.01.00) Page 246 

case should be avoided as some versions of UNIX can assume this to mean 
your terminal doesn’t recognise lower case letters and every piece of text 
subsequently sent to your display is in uppercase.  

• Easy to remember  
A random sequence of letters and numbers is hard to remember and so the 
user will be continually have to ask the Systems Administrator "what’s my 
username?"  

• No nicknames  
A username will probably be part of an email address. The username will 
be one method by which other users identify who is on the system. Not all 
the users may know the nicknames of certain individuals.  

T A fixed format  
There should be a specified system for creating a username. Some 
combination of first name, last name and initials is usually the best. Setting 
a policy allows you to automate the procedure of adding new users. It also 
makes it easy for other users to work out what the username for a person 
might be.  

Passwords 

An account’s password is the key that lets someone in to use the account. A 
password should be a secret collection of characters known only by the owner 
of the account.  

Poor choice of passwords is the single biggest security hole on any multi-user 
computer system. As a Systems Administrator you should follow a strict set of 
guidelines for passwords (after all if someone can break the root account’s 
password, your system is going bye, bye). In addition you should promote the 
use of these guidelines amongst your users.  

Password guidelines  

An example set of password guidelines might include  

• use combinations of upper and lower case characters, numbers and 
punctuation characters,  

• don’t use random combinations of characters if they break the following 
two rules,  

• be easy to remember, 
If a user forgets their password they can’t use the system and guess whom 
they come and see. Also the user SHOULD NOT have to write their 
password down.  

• be quick to type, 
One of the easiest and most used methods for breaking into a system is 
simply watching someone type in their password. It is harder to do if the 
password is typed in quickly.  



85321, Systems Administration Chapter 9:  Users 

David Jones (20.01.00) Page 247 

• a password should be at least 6 characters long, 
The shorter a password is the easier it is to break. Some systems will not 
allow passwords shorter than a specified length.  

• a password should not be any longer than 8 to 10 characters, 
Most systems will look as if they are accepting longer passwords but they 
simply ignore the extra characters. The actual size is system specific but 
between eight and ten characters is generally the limit.  

• do not use words from ANY language, 
Passwords that are words can be cracked (you’ll see how later).  

• do not use combinations of just words and numbers, 
Passwords like hello1 are just as easy to crack as hello.  

• use combinations of words separated by punctuation characters or 
acronyms of uncommon phrases/song lines, 
They should be easy to remember but hard to crack. e.g. b1gsh1p  

• change passwords regularly,  
Not too often that you forget which password is currently set.  

• never reuse passwords.  

The UID 

Every account on a UNIX system has a unique user or login name that is used 
by users to identify that account. The operating system does not use this name 
to identify the account. Instead each account must be assigned a unique user 
identifier number (UID) when it is created. The UID is used by the operating 
system to identify the account.  

UID guidelines  

In choosing a UID for a new user there are a number of considerations to take 
into account including  

• choose a UID number between 100 and 32767 (or 60000), 
Numbers between 0 and 99 are reserved by some systems for use by 
system accounts. Different systems will have different possible maximum 
values for UID numbers. Around 32000 and 64000 are common upper 
limits.  

• UIDs for a user should be the same across machines, 
Some network systems (e.g. NFS) require that users have the same UID 
across all machines in the network. Otherwise they will not work properly.  

• you may not want to reuse a number. 
Not a hard and fast rule. Every file is owned by a particular user id. 
Problems arise where a user has left and a new user has been assigned the 
UID of the old user. What happens when you restore from backups some 
files that were created by the old user? The file thinks the user with a 
particular UID owns it. The new user will now own those files even though 
the username has changed.  



85321, Systems Administration Chapter 9:  Users 

David Jones (20.01.00) Page 248 

Home directories  

Every user must be assigned a home directory. When the user logs in it is this 
home directory that becomes the current directory. Typically all user home 
directories are stored under the one directory. Many modern systems use the 
directory /home. Older versions used /usr/users . The names of home 
directories will match the username for the account.  

For example, a user jonesd would have the home directory /home/jonesd  
In some instances it might be decided to further divide users by placing users 
from different categories into different sub-directories.  

For example, all staff accounts may go under /home/staff while students are 
placed under /home/students . These separate directories may even be on 
separate partitions.  

Login shell 

Every user account has a login shell. A login shell is simply the program that is 
executed every time the user logs in. Normally it is one of the standard user 
shells such as Bourne, csh, bash  etc. However it can be any executable 
program.  

One common method used to disable an account is to change the login shell to 
the program /bin/false . When someone logs into such an account 
/bin/false  is executed and the login: prompt reappears.  

Dot files  

A number of commands, including vi, the mail system and a variety of shells, 
can be customised using dot files. A dot file is usually placed into a user’s 
home directory and has a filename that starts with a . (dot). This files are 
examined when the command is first executed and modifies how it behaves.  

Dot files are also known as rc files. As you should’ve found out by doing one 
of the exercises from the previous chapter rc is short for "run command" and 
is a left over from an earlier operating system.  

Commands and their dot files  

Table 9.1 summarises the dot files for a number of commands. The FAQs for 
the newsgroup comp.unix.questions  has others.  

Shell dot files 

These shell dot files, particularly those executed when a shell is first executed, 
are responsible for  

• setting up command aliases,  
Some shells (e.g. bash) allow the creation of aliases for various commands. 
A common command alias for old MS-DOS people is dir, usually set to 
mean the same as ls -l.  

• setting values for shell variables like PATH and TERM.  



85321, Systems Administration Chapter 9:  Users 

David Jones (20.01.00) Page 249 

 

Filename Command Explanation 

~/.cshrc /bin/csh Executed every time C shell started.  

~/.login /bin/csh Executed after .cshrc when logging in with C 
shell as the login shell.  

/etc/profile /bin/sh Executed during the login of every user that 
uses the Bourne shell or its derivatives.  

~/.profile /bin/sh Located in user’s home directory. Executed 
whenever the user logs in when the Bourne 
shell is their login shell  

~/.logout /bin/csh executed just prior to the system logging the 
user out (when the csh is the login shell)  

~/.bash_logout /bin/bash executed just prior to the system logging the 
user out (when bash is the login shell)  

~/.bash_history /bin/bash records the list of commands executed using 
the current shell  

~/.forward incoming mail Used to forward mail to another address or a 
command  

~/.exrc vi used to set options for use in vi  

T a b l e  9 . 1  
D o t  f i l e s  

Skeleton directories  

Normally all new users are given the same startup files. Rather than create the 
same files from scratch all the time, copies are usually kept in a directory 
called a skeleton directory. This means when you create a new account you can 
simply copy the startup files from the skeleton directory into the user’s home 
directory.  

The standard skeleton directory is /etc/skel. It should be remembered that 
the files in the skeleton directory are dot files and will not show up if you 
simply use ls /etc/skel . You will have to use the -a switch for ls  to see dot 
files.  

Exercises 

9.1. Examine the contents of the skeleton directory on your system (if you 
have one). Write a command to copy the contents of that directory to 
another.  
Hint:  It’s harder than it looks.  

9.2. Use the bash dot files to create an alias dir that performs the command 
ls -al   



85321, Systems Administration Chapter 9:  Users 

David Jones (20.01.00) Page 250 

The mail file  

When someone sends mail to a user that mail message has to be stored 
somewhere so that it can be read. Under UNIX each user is assigned a mail 
file. All user mail files are placed in the same directory. When a new mail 
message arrives it is appended onto the end of the user’s mail file.  

The location of this directory can change depending on the operating system 
being used. Common locations are  

• /usr/spool/mail ,  

• /var/spool/mail , 
This is the standard Linux location.  

• /usr/mail   

• /var/mail .  

All mail in the one location  

On some sites it is common for users to have accounts on a number of different 
computers. It is easier if all the mail for a particular user goes to the one 
location. This means that a user will choose one machine as their mail machine 
and want all their email forwarded to their account on that machine.  

There are at least two ways by which mail can be forwarded  

• the user can create a .forward file in their home directory (see Table 7.1),  
or 

• the administrator can create an alias.  

Mail aliases  

If you send an e-mail message that cannot be delivered (e.g. you use the wrong 
address) typically the mail message will be forwarded to the postmaster of 
your machine. There is usually no account called postmaster, postmaster  is 
a mail alias.  

When the mail delivery program gets mail for postmaster it will not be able 
to find a matching username. Instead it will look up a specific file, under Linux 
/etc/aliases . This file will typically have an entry like 

  postmaster: root 

This tells the delivery program that anything addressed postmaster should 
actually be delivered to the user root.   Take a look at the /etc/aliases file on 
your system for other aliases. 

Site aliases  

Some companies will have a set policy for e-mail aliases for all staff. This 
means that when you add a new user you also have to update the aliases file.  



85321, Systems Administration Chapter 9:  Users 

David Jones (20.01.00) Page 251 

For example  

The Central Queensland University has aliases set up for all staff. An e-mail 
with an address using the format Initial.Surname@cqu.edu.au  will be 
delivered to that staff member’s real mail address.  

In my case the alias is d.jones@cqu.edu.au . The main on-campus mail host 
has an aliases file that translates this alias into my actual e-mail address 
jonesd@jasper.cqu.edu.au .  

Linux mail  

The following exercise requires that you have mail delivery working on your 
system.  You can test whether or not email is working on your system by 
starting one of the provided email programs (e.g. elm) and send yourself an 
email message.  You do this by using only your username as the address (no 
@).  If it isn’t working, refer to the documentation from RedHat on how to get 
email functioning. 

Exercises 

9.3. Send a mail message from the root user to your normal user account 
using a mail program of your choice.  

9.4. Send a mail message from the root user to the address notHere. This 
mail message should bounce (be unable to be delivered). You will get a 
returned mail message. Have a look at the mail file for postmaster. Has 
it increased?  

9.5. Create an alias for notHere and try the above exercise again. If you 
have installed sendmail, the following steps should create an alias  
- login as root,  
- add a new line containing notHere: root  in the file /etc/aliases   
- run the command newaliases  

Account configuration files  
Most of the characteristics of an account mentioned above are stored in two or 
three configuration files. All these files are text files, each account has a one-
line entry in the file with each line divided into a number of fields using 
colons.  

Table 9.2. lists the configuration files examined and their purpose. Not all 
systems will have the /etc/shadow  file. By default Linux doesn’t however it is 
possible to install the shadow password system. On some platforms the shadow 
file will exist but its filename will be different.  



85321, Systems Administration Chapter 9:  Users 

David Jones (20.01.00) Page 252 

 

File Purpose 

/etc/passwd the password file, holds most of an account 
characteristics including username, UID, 
GID, GCOS information, login shell, home 
directory and in some cases the password  

/etc/shadow the shadow password file, a more secure 
mechanism for holding the password, 
common on more modern systems  

/etc/group the group file, holds characteristics about a 
system’s groups including group name, 
GID and group members  

T a b l e  9 . 2  
A c c o u n t  c o n f i g u r a t i o n  f i l e s   

/etc/passwd   

/etc/passwd  is the main account configuration file. Table 9.3 summarises 
each of the fields in the /etc/passwd  file. On some systems the encrypted 
password will not be in the passwd file but will be in a shadow file.  

Field Name Purpose 

login name the user’s login name  

encrypted password * encrypted version of the user’s password  

UID number the user’s unique numeric identifier  

default GID the user’s default group id  

GCOS information no strict purpose, usually contains full 
name and address details, sometimes 
called the comment field 

home directory the directory in which the user is placed 
when they log in  

login shell the program that is run when the user logs 
in  

*  n o t  o n  s y s t e m s  w i t h  a  s h a d o w  p a s s w o r d  f i l e  

T a b l e  9 . 3  
/ e t c / p a s s w d   

Exercises 

9.6. Examine your account’s entry in the /etc/passwd field. What is your 
UID, GID? Where is your home directory and what is your login shell?  



85321, Systems Administration Chapter 9:  Users 

David Jones (20.01.00) Page 253 

Everyone can read /etc/passwd   

Every user on the system must be able to read the /etc/passwd file. This is 
because many of the programs and commands a user executes must access the 
information in the file. For example, when you execute the command ls -l 
command part of what the command must do is translate the UID of the file’s 
owner into a username. The only place that information is stored is in the 
/etc/passwd  file.  

This is a problem  

Since everyone can read the /etc/passwd file they can also read the encrypted 
password.  

The problem isn’t that someone might be able to decrypt the password. The 
method used to encrypt the passwords is supposedly a one way encryption 
algorithm. You aren’t supposed to be able to decrypt the passwords.  

Password matching  

The way to break into a UNIX system is to obtain a dictionary of words and 
encrypt the whole dictionary. You then compare the encrypted words from the 
dictionary with the encrypted passwords. If you find a match you know what 
the password is.  

Studies have shown that with a carefully chosen dictionary, between 10-20% 
of passwords can be cracked on any machine. Later in this chapter you’ll be 
shown a program that can be used by the Systems Administrator to test users’ 
passwords.  

An even greater problem is the increasing speed of computers. One modern 
super computer is capable of performing 424,400 encryptions a second. This 
means that all six-character passwords can be discovered in two days and all 
seven-character passwords within four months.  

The solution  

The solution to this problem is to not store the encrypted password in the 
/etc/passwd  file. Instead it should be kept in another file that only the root 
user can read. Remember the passwd program is setuid root.  
This other file in which the password is stored is usually referred to as the 
shadow password file. It can be stored in one of a number of different locations 
depending on the version of UNIX you are using. A common location, and the 
one used by the Linux shadow password suite, is /etc/shadow.  

During installation of Redhat 6.1 you are given the choice of using shadow 
passwords or not.  Where possible you should use shadow passwords. 



85321, Systems Administration Chapter 9:  Users 

David Jones (20.01.00) Page 254 

Shadow file format  

Typically the shadow file consists of one line per user containing the encrypted 
password and some additional information including  

• username, 

• the date the password was last changed, 

• minimum number of days before the password can be changed again, 

• maximum number of days before the password must be changed, 

• number of days until age warning is sent to user, 

• number of days of inactivity before account should be removed, 

• absolute date on which the password will expire. 

The additional information is used to implement password aging. This will be 
discussed later in the security chapter.  

Groups  
A group is a logical collection of users. Users with similar needs or 
characteristics are usually placed into groups. A group is a collection of user 
accounts that can be given special permissions. Groups are often used to 
restrict access to certain files and programs to everyone but those within a 
certain collection of users.  

/etc/group   

The /etc/group  file maintains a list of the current groups for the system and 
the users that belong to each group. The fields in the /etc/group file include  

• the group name,  
A unique name for the group.  

• an encrypted password (this is rarely used today) , 

• the numeric group identifier or GID, and 

• the list of usernames of the group members separated by commas.  

For example  

On the Central Queensland University UNIX machine jasper only certain 
users are allowed to have full Internet access. All these users belong to the 
group called angels. Any program that provides Internet access has as the 
group owner the group angels and is owned by root. Only members of the 
angels  group or the root user can execute these files.  



85321, Systems Administration Chapter 9:  Users 

David Jones (20.01.00) Page 255 

The default group  

Every user is the member of at least one group sometimes referred to as the 
default group. The default group is specified by the GID specified in the user’s 
entry in the /etc/passwd  file.  

Since the default group is specified in /etc/passwd it is not necessary for the 
username to be added to the /etc/group file for the default group.  

Other groups  

A user can in fact be a member of several groups. Any extra groups the user is 
a member of are specified by entries in the /etc/group file.  

It is not necessary to have an entry in the /etc/group file for the default 
group. However if the user belongs to any other groups they must be added to 
the /etc/group  file.  

Special accounts  
All UNIX systems come with a number of special accounts. These accounts 
already exist and are there for a specific purpose. Typically these accounts will 
all have UIDs that are less than 100 and are used to perform a variety of 
administrative duties. Table 9.4. lists some of the special accounts that may 
exist on a machine. 

Username UID Purpose 

root 0 The super user account. 
Used by the Systems 
Administrator to perform a 
number of tasks. Can do 
anything. Not subject to any 
restrictions  

daemon 1 Owner of many of the 
system daemons (programs 
that run in the background 
waiting for things to 
happen).  

bin 2 The owner of many of the 
standard executable 
programs  

T a b l e  9 . 4  
S p e c i a l  a c c o u n t s   

root  

The root  user, also known as the super user is probably the most important 
account on a UNIX system. This account is not subject to the normal 
restrictions placed on standard accounts. It is used by the Systems 



85321, Systems Administration Chapter 9:  Users 

David Jones (20.01.00) Page 256 

Administrator to perform administrative tasks that can’t be performed by a 
normal account.  

Restricted actions  

Some of the actions for which you’d use the root account include  

• creating and modifying user accounts,  

• shutting the system down,  

• configuring hardware devices like network interfaces and printers,  

• changing the ownership of files,  

• setting and changing quotas and priorities, and  

• setting the name of a machine.  

Be careful  

You should always be careful when logged in as root. When logged in as 
root you must know what every command you type is going to do. 
Remember the root account is not subject to the normal restrictions of other 
accounts. If you execute a command as root it will be done, whether it 
deletes all the files on  your system or not. 

The mechanics  
Adding a user is a fairly mechanical task that is usually automated either 
through shell scripts or on many modern systems with a GUI based program. 
However it is still important that the Systems Administrator be aware of the 
steps involved in creating a new account.  If you know how it works you can 
fix any problems which occur.   

The steps to create a user include 

• adding an entry for the new user to the /etc/passwd file,  

• setting an initial password,  

• adding an entry to the /etc/group  file,  

• creating the user’s home directory,  

• creating the user’s mail file or setting a mail alias,  

• creating any startup files required for the user,  

• testing that the addition has worked, and  

• possibly sending an introductory message to the user.  

Other considerations  

This chapter talks about account management which includes the mechanics of 
adding a new account. User management is something entirely different. When 
adding a new account, user management tasks that are required include  



85321, Systems Administration Chapter 9:  Users 

David Jones (20.01.00) Page 257 

• making the user aware of the site’s policies regarding computer use,  

• getting the user to sign an "acceptable use" form,  

• letting the user know where and how they can find information about their 
system, and  

• possibly showing the user how to work the system.  

Pre-requisite Information  

Before creating a new user there is a range of information that you must know 
including  

• the username format being used at your site, 
Are you using djones jonesdd david jones  or perhaps you’re using 
student or employee numbers for usernames.  

• the user’s name and other person information, 
Phone number, are they a computing person, someone from sales?  

• where the user’s home directory will be,  

• will this user need a mail file on this machine or should there be an alias set 
up,  

• startup shell,  

• startup files,  

• UID and GID. 
Again there should be some site wide standard for this.  

Adding an /etc/passwd entry  

For every new user, an entry has to be added to the /etc/passwd file. There 
are a variety of methods by which this is accomplished including  

• using an editor, 
This is a method that is often used. However it can be unsafe and it is 
generally not a good idea to use it.  

• the command vipw, or 
Some systems (usually BSD based) provide this command. vipw invokes 
an editor so the Systems Administrator can edit the passwd file safely. The 
command performs some additional steps that ensures that the editing is 
performed consistently. Some distributions of Linux supply vipw.  

• a dedicated adduser program. 
Many systems, Linux included, provide a program (the name will change 
from system to system) that accepts a number of command-line parameters 
and then proceeds to perform many of the steps involved in creating a new 
account. The Linux command is called adduser  



85321, Systems Administration Chapter 9:  Users 

David Jones (20.01.00) Page 258 

The initial password  

NEVER LEAVE THE PASSWORD FIELD BLANK.  
If you are not going to set a password for a user put a * in the password field of 
/etc/passwd  or the /etc/shadow  file. On most systems, the * character is 
considered an invalid password and it prevents anyone from using that 
account.  

If a password is to be set for the account then the passwd command must be 
used. The user should be forced to immediately change any password set by 
the Systems Administrator  

/etc/group entry  

While not strictly necessary, the /etc/group file should be modified to 
include the user’s login name in their default group. Also if the user is to be a 
member of any other group they must have an entry in the /etc/group file.  

Editing the /etc/group  file with an editor should be safe.  

The home directory  

Not only must the home directory be created but the permissions also have to 
be set correctly so that the user can access the directory.  

The permissions of a home directory should be set such that  

• the user should be the owner of the home directory,  

• the group owner of the directory should be the default group that the user 
belongs to,  

• at the very least, the owner of the directory should have rwx permissions, 
and  

• the group and other permissions should be set as restrictively as possible.  

The startup files  

Once the home directory is created the startup files can be copied in or created. 
Again you should remember that this will be done as the root user and so 
root  will own the files. You must remember to change the ownership.  

For example  

The following is an example set of commands that will perform these tasks.  

mkdir home_directory 
cp -pr /etc/skel/.[a-zA-Z]* home_directory 
chown -R login_name home_directory 
chgrp -R group_name home_directory 
chmod -R 700 home_directory  



85321, Systems Administration Chapter 9:  Users 

David Jones (20.01.00) Page 259 

Setting up mail  

A new user will either  

• want to read their mail on this machine, or  

• want to read their mail on another machine.  

The user’s choice controls how you configure the user’s mail.  

A mail file  

If the user is going to read their mail on this machine then you must create 
them a mail file. The mail file must go in a standard directory (usually 
/var/spool/mail  under Linux). As with home directories it is important that 
the ownership and the permissions of a mail file be set correctly. The 
requirements are  

• the user must be able to read and write the file,  
After all, the user must be able to read and delete mail messages.  

• the group owner of the mail file should be the group mail and the group 
should be able to read and write to the file, 
The programs that deliver mail are owned by the group mail. These 
programs must be able to write to the file to deliver the user’s mail.  

• no-one else should have any access to the file,  
No-one wants anyone else peeking at their private mail.  

Mail aliases and forwards  

If the user’s main mail account is on another machine, any mail that is sent to 
this machine should be forwarded to the appropriate machine. There are two 
methods  

• a mail alias, or  

• a file ~/.forward   

Both methods achieve the same result. The main difference is that the user can 
change the .forward  file if they wish to. They can’t modify a central alias.  

Testing an account 

Once the account is created, at least in some instances, you will want to test the 
account creation to make sure that it has worked.  There are at least two 
methods you can use 

• login as the user 

• use the su command. 



85321, Systems Administration Chapter 9:  Users 

David Jones (20.01.00) Page 260 

The su command  

The su command is used to change from one user account to another. To a 
certain extent it acts like logging in as the other user. The standard format is su 

username.  
[david@beldin david]$ su 
Password: 

Time to become the root user.  su without any parameter lets you become the 
root user, as long as you know the password.  In the following the id 
command is used to prove that I really have become the root user.  You’ll also 
notice that the prompt displayed by the shell has changed as well.  In particular 
notice the # character, commonly used to indicate a shell with root permission. 

[root@beldin david]# id  
uid=0(root) gid=0(root) 
groups=0(root),1(bin),2(daemon),3(sys),4(adm),6(disk),10(wheel) 
[root@beldin david]# pwd 
/home/david 

Another point to notice is that when you don’t use the "–" argument for su all 
that has changed is user and group ids.  The current directory doesn’t change. 

[root@beldin david]# cd /  
[root@beldin /]# pwd 
/ 
[root@beldin /]# su david 
[david@beldin /]$ pwd 
/ 
[david@beldin /]$ exit 

However, when you do use the "–" argument of the su command, it simulates 
a full login.  This means that any startup files are executed and that the current 
directory becomes the home directory of the user account you "are becoming".  
This is equivalent to logging in as the user. 

[root@beldin /]# su – david  
[david@beldin david]$ pwd 
/home/david 
 

If you run su as a normal user you will have to enter the password of the user 
you are trying to become. If you don’t specify a username you will become the 
root user (if you know the password).  

The "–"  switch  

The su command is used to change from one user to another. By default, su 

david  will change your UID and GID to that of the user david (if you know 
the password) but won’t change much else. Using the - switch of su it is 
possible to simulate a full login including execution of the new user’s startup 
scripts and changing to their home directory.  



85321, Systems Administration Chapter 9:  Users 

David Jones (20.01.00) Page 261 

su  as root  

If you use the su command as the root user you do not have to enter the new 
user’s password. su will immediately change you to the new user. su especially 
with the - switch is useful for testing a new account.  

Exercises 

9.7. Login as yourself and perform the following steps  
- show your current directory (use the pwd command),  
- show you current user id and group id (use the id command),  
- use su to become the root user,  
- repeat the first two steps  
- use the command "su –"  to simulate a full login as the root user,  
- repeat the first two steps  

9.8. What’s the difference between using su and su - ?  

Inform the user  

Lastly you should inform the user of their account details. Included in this 
should be some indication of where they can get assistance and some pointers 
on where to find more documentation.  

Exercises 

9.9. By hand, create a new account for a user called David Jones.  

Removing an account  
Deleting an account involves reversing the steps carried out when the account 
was created. It is a destructive process and whenever something destructive is 
performed, care must always be taken. The steps that might be carried out 
include  

• disabling the account,  

• backing up and removing the associated files  

• setting up mail forwards. 

Situations under which you may wish to remove an account include  

• as punishment for a user who has broken the rules, or 
In this situation you may only want to disable the account rather than 
remove it completely.  

• an employee has left.  



85321, Systems Administration Chapter 9:  Users 

David Jones (20.01.00) Page 262 

Disabling an account  

Disabling an account ensures that no-one can login but doesn’t delete the 
contents of the account. This is a minimal requirement for removing an 
account. There are two methods for achieving this  

• change the login shell, or 
Setting the login shell to /bin/false  will prevent logins. However it may 
still be possible for the user to receive mail through the account using POP 
mail programs like Eudora.  

• change the password. 

The * character is considered by the password system to indicate an illegal 
password. One method for disabling an account is to insert a * character into 
the password field. If you want to re-enable the account (with the same 
password) simply remove the *.  

Another method is to simply remove the entry from the /etc/passwd and 
/etc/shadow  files all together.  

Backing up  

It is possible that this user may have some files that need to be used by other 
people. So back everything up, just in case.  

Remove the user’s files  

All the files owned by the account should be removed from wherever they are 
in the file hierarchy. It is unlikely for a user to own files that are located 
outside of their home directory (except for the mail file). However it is a good 
idea to search for them. Another use for the find command.  

Mail for old users  

On some systems, even if you delete the user’s mail file, mail for that user can 
still accumulate on the system. If you delete an account entirely by removing it 
from the password field, any mail for that account will bounce.  

In most cases, a user who has left will want their mail forwarded onto a new 
account. One solution is to create a mail alias for the user that points to their 
new address.  

The Goals of Account Creation 
As mentioned previously there is little point in adding users manually.  It is a 
simple task which can be quite easily automated.  This section looks at some of 
the tools you can use to automate this task. 

There are at least three goals a Systems Administrator will want to achieve 
with adding users 

• make it as simple as possible 

• automate the addition of large numbers of users 



85321, Systems Administration Chapter 9:  Users 

David Jones (20.01.00) Page 263 

• delegate the task of adding users to someone else 

The following sections will show you the tools which will allow you to 
achieve these goals. 

Making it simple 
If you’ve completed exercise 9.8 you should by now be aware of what a 
straight forward, but time consuming, task creating a new user account is.  
Creating an account manually might be okay for one or two accounts but 
adding 100 this way would get quite annoying.  Luckily there are a number of 
tools which make this process quite simple. 

useradd 

useradd is an executable program which significantly reduces the 
complexity of adding a new user.  A solution to the previous exercise using 
useradd looks like this 

useradd –c "David Jones" david 

useradd will automatically create the home directory and mail file, copy 
files from skeleton directories and a number of other tasks.  Refer to the 
useradd man page for more information. 

userdel and usermod 

userdel is the companion command to useradd and as the name suggests 
it deletes or removes a user account from the system.  usermod allows a 
Systems Administrator to modify the details of an existing user account. 

Graphical Tools 

RedHat Linux provides a number of tools with graphical user interfaces to help 
both the Systems Administrator and the normal user.  Tools such as 
userinfo and userpasswd allow normal users to modify their user 
accounts.  RedHat also provides a command called control-panel which 
provides a graphical user interface for a number of Systems Administration 
related tasks including user management. 

control-panel is in fact just a simple interface to run a number of other 
programs which actually perform the tasks.  For example, to perform the 
necessary user management tasks control-panel will run the command 
usercfg.  Diagram 9.1 provides examples of the interface provided by the 
usercfg command. 



85321, Systems Administration Chapter 9:  Users 

David Jones (20.01.00) Page 264 

 
D i a g r a m  9 . 1  

u s e r c f g  i n t e r f a c e  

Automation 
Tools with a graphical user interface are nice and simple for creating one or 
two users.  However, when you must create hundreds of user accounts, they 
are a pain.  In situations like this you must make use of a scripting language to 
automate the process. 

The process of creating a user account can be divided into the following steps 

• gathering the appropriate information, 

• deciding on policy for usernames, passwords etc, 

• creating the accounts, 

• performing any additional special steps. 

The steps in this process are fairly general purpose and could apply in any 
situation requiring the creation of a large number of user accounts, regardless 
of the operating system. 

Gathering the information 

The first part of this chapter described the type of information that is required 
in order to create a UNIX user account.  When automating the large scale 
creation of user accounts this information is generally provided in an electronic 
format.  Often this information will be extracted from a database and converted 
into the appropriate format. 

Policy 

Gathering the raw information is not sufficient.  Policy must be developed 
which specifies rules such as username format, location of home directories, 



85321, Systems Administration Chapter 9:  Users 

David Jones (20.01.00) Page 265 

which groups users will belong to and other information discussed earlier in 
the chapter. 

There are no hard and fast rules for this policy.  It is a case of applying 
whatever works best for your particular situation. 

For example 

CQ-PAN (http://cq-pan.cqu.edu.au) was a system managed mainly by CQU 
computing students.  CQ-PAN provided accounts for students for a variety of 
reasons.  During its history it has used two username formats 

• ba format 
The first username format, based on that used by Freenet system, was 
ba005 ba103 ba321 

• name format 
This was later changed to something a little more personal, 
firstnameLastInitialNumber.  e.g.  davidj1 carolyg1 

Creating the accounts 

Once you know what format the user information will be in and what formats 
you wish to follow for user accounts, you can start creating the accounts.  
Generally this will use the following steps 

• read the information from the provided data file 

• convert it into the format specified in the site policy 

• use the UNIX account creation commands to create the accounts 

Additional steps 

Simply creating the accounts using the steps introduced above is usually not all 
that has to be done.  Most sites may include additional steps in the account 
creation process such as 

• sending an initial, welcoming email message, 
Such an email can serve a number of purposes, including informing the 
new users of their rights and responsibilities.  It is important that users be 
made aware as soon as possible of what they can and can’t do and what 
support they can expect from the Systems Administration team. 

• creating email aliases or other site specific steps. 

Changing passwords without interaction 

Quite a few years ago there was a common problem that had to be overcome in 
order to automate the account creation process.  This problem was how to set 
the new user’s password without human intervention.  Remember, when 
creating hundreds of accounts it is essential to remove all human interaction. 



85321, Systems Administration Chapter 9:  Users 

David Jones (20.01.00) Page 266 

Given that this is such a common problem for UNIX systems, there are now a 
number of solutions to this problem.  RedHat Linux comes with a number of 
solutions including the commands chpasswd, newusers and mkpasswd. 

mkpasswd is an example of an Expect (http://expect.nist.gov/) script. Expect 
is a program that helps to automate interactive applications such as passwd and 
others including telnet ftp  etc.  This allows you to write scripts to automate 
processes which normally require human input. 

For example 

In the pre-Web days (1992), satellite weather photos were made available via 
FTP from a computer at James Cook University.  These image files were 
stored using a standard filename policy which indicated which date and time 
the images were taken.  If you wanted to view the latest weather image you 
had to manually ftp to the James Cook computer, download the latest image 
and then view it on your machine. 

Manually ftping the files was not a large task, only 5 or 6 separate commands, 
however if you were doing this five times a day it got quite repetitive.  Expect 
provides a mechanism by which a script could be written to automate this 
process. 

Delegation 
Systems Administrators are highly paid, technical staff.  A business does not 
want Systems Administrators wasting their time performing mundane, low-
level, repetitive tasks.  Where possible a Systems Administrator should 
delegate responsibility for low-level tasks to other staff.  In this section we 
examine one approach using the sudo command. 

Allocating root pr ivilege  
Many of the menial tasks, like creating users and performing backups, require 
the access which the root account provides. This means that these tasks can’t 
be allocated to junior members of staff without giving them access to 
everything else on the system.  In most cases you don’t want to do this. 

There is another problem with the root account.  If you have a number of 
trusted Systems Administrators the root account often becomes a group 
account.  The problem with this is that since everyone knows the root 
password there is now way by which you can know who is doing what as 
root.  There is no accountability.  While this may not be a problem on your 
individual system on commercial systems it is essential to be able to track what 
everyone does. 

sudo  

A solution to these problems is the sudo command. sudo 
(http://www.courtesan.com/sudo/) is not a standard UNIX command but a 
widely available public domain tool. It comes standard on most Linux 



85321, Systems Administration Chapter 9:  Users 

David Jones (20.01.00) Page 267 

distributions.  It does not appear to be included with RedHat.  You can find a 
copy of sudo on the 85321 Web site/CD-ROM under the Resource Materials 
section for week 5. 

sudo  allows you to allocate certain users the ability to run programs as root 
without giving them access to everything. For example, you might decide that 
the office secretary can run the adduser script, or an operator might be 
allowed to execute the backup script. 

sudo also provides a solution to the accountability problem. sudo logs 
every command people perform while using it.  This means that rather than 
using the root account as a group account, you can provide all your Systems 
Administrators with sudo access.  When they perform their tasks with sudo, 
what they do will be recorded. 

For example 

To execute a command as root using sudo you login to your "normal" user 
account and then type sudo followed by the command you wish to execute.  
The following example shows what happens when you can and can’t 
executable a particular command using sudo. 

[david@mc:~]$ sudo ls 
We trust you have received the usual lecture from the local System 
Administrator. It usually boils down to these two things: 
 
        #1) Respect the privacy of others. 
        #2) Think before you type. 
 
 85321.students                     archive 
[david@mc:~]$ sudo cat 
Sorry, user david is not allowed to execute "/bin/cat" as root on mc. 

If the sudoers  file is configured to allow you to execute this command on the 
current machine, you will be prompted for your normal password. You’ll only 
be asked for the password once every five minutes.  

/etc/sudoers   

The sudo configuration file is usually /etc/sudoers  or in some instances 
/usr/local/etc/sudoers . sudoers  is a text file with lines of the following 
format 

username  hostname=command  

An example sudoers  file might look like this 

root  ALL=ALL 
david ALL=ALL 
bob   cq-pan=/usr/local/bin/backup 
jo    ALL=/usr/local/bin/adduser  

In this example the root account and the user david are allowed to execute 
all commands on all machines. The user bob can execute the 
/usr/local/bin/backup  command but only on the machine cq-pan. The 
user jo can execute the adduser command on all machines.  The sudoers 
man page has a more detail example and explanation. 



85321, Systems Administration Chapter 9:  Users 

David Jones (20.01.00) Page 268 

By allowing you to specify the names of machines you can use the same 
sudoers  file on all machines. This makes it easier to manage a number of 
machines.  All you do is copy the same file to all your machines (there is a 
utility called rdist which can make this quite simple). 

sudo advantages  

sudo  offers the following advantages  

• accountability because all commands executed using sudo are logged, 
Logging on a UNIX computer, as you’ll be shown in a later chapter, is done 
via the syslog system.  What this means is that on a RedHat machine the 
information from sudo is logged in the file /var/log/messages.  

• menial tasks can be allocated to junior staff without providing root access, 

• using sudo is faster than using su, 

• a list of users with root access is maintained,  

• privileges can be revoked without changing the root password.  

Some sites that use sudo keep the root password in an envelope in someone’s 
draw. The root account is never used unless in emergencies where it is 
required.  

Exercises 

9.10. Install sudo onto your system.  The source code for sudo is available 
from the Resource Materials section of the 83521 Website/CD-ROM. 

9.11. Configure your version of sudo so that you can use it as a replacement 
for handing out the root password.  What does your /etc/sudoers 
file look like? 

9.12. Use sudo a number of times.  What information is logged by the sudo 
command? 

9.13. One of the listed advantages of sudo is the ability to log what people 
are doing with the root access.  Without some extra effort this 
accountability can be quite pointless.  Why?  (Hint: the problem only 
really occurs with users such as david in the above example 
sudoers file. 

Conclusions  
Every user on a UNIX machine must have an account. Components of a user 
account can include  

• login names (also called a username),  

• passwords,  

• the numeric user identifier or UID,  

• the numeric group identifier or GID,  



85321, Systems Administration Chapter 9:  Users 

David Jones (20.01.00) Page 269 

• a home directory,  

• a login shell,  

• mail aliases,  

• a mail file, and  

• startup files.  

Configuration files related to user accounts include  

• /etc/passwd ,  

• /etc/shadow ,  

• /etc/group , and  

• to a certain extent /etc/aliases   

Creating a user account is a mechanical task that can and often is automated. 
Creating an account also requires root privilege. Being the root user implies no 
restrictions and enables anything to be done. It is generally not a good idea to 
allocate this task to a junior member of staff. However, there are a number of 
tools which allow this and other tasks to be delegated. 

Review Questions 
9.1  

For each of the following files/directories  

• describe the purpose they fulfill 

• describe the format of the file  

The files are /etc/passwd /etc/group /etc/skel 

9.2  

Your company is about to fire an employee. What steps would you perform to 
remove the employee’s account?  

9.3 
Set up sudo so that a user with the account secretary can run the Linux 
user management commands which were introduced in this chapter. 



85321, Systems Administration Chapter 10: Managing File Systems 

David Jones  (20.01.00)  Page 270 

Chapter 
Managing File Systems 

Introduction  

What?  

In a previous chapter, we examined the overall structure of the Linux file 
system. This was a fairly abstract view that didn’t explain how the data was 
physically transferred on and off the disk. Nor in fact, did it really examine the 
concept of "disks" or even "what" the file system "physically" existed on.   

In this chapter, we shall look at how Linux interacts with physical devices (not 
just disks), how in particular Linux uses "devices" with respect to its file 
system and revisit the Linux file system - just at a lower level.   

Why?  

Why are you doing this? Doesn’t this sound all a bit too like Operating 
Systems?   

Unless you are content to accept that all low level interaction with the 
operating system occurs by a mystical form of osmosis and that you will never 
have to deal with:   

• A Disk crash - an unfortunate physical event involving one of the 
read/write heads of a hard disk coming into contact with the platter (which 
is spinning at high speed) causing the removal of the metallic oxide (the 
substance that maintains magnetic polarity, thus storing data).  This is 
usually a fatal event for the disk (and sometimes its owner).  

• Adding a disk, mouse, modem terminal or a sound card - unlike some 
unmentionable operating systems, Linux is not "plug-and-pray".  The 
addition of such a device requires modifications to the system.  

• The accidental erasure of certain essential things called "device files"  - 
while the accidental erasure of any file is a traumatic event, the erasure of a 
device file calls for special action.  

• Installing or upgrading to a kernel or OS release - you may suddenly find 
that your system doesn’t know how to talk to certain things (like your CD-
ROM, your console or maybe your SCSI disk...)  - you will need to find 
out how to solve these problems.  

• Running out of some weird thing called "I-Nodes"  - an event which means 
you can’t create any more files.  

... then you will definitely need to read this chapter!   



85321, Systems Administration Chapter 10: Managing File Systems 

David Jones  (20.01.00)  Page 271 

Other  Resources 
Other material discussing file system related information includes 

• HOWTOs 
CD Writing HOWTO, CDROM HOWTO, Diskless HOWTO, Jaz Drive 
HOWTO, Large Disk HOWTO, Multi-Disk HOWTO, Optical Disk 
HOWTO, Root RAID HOWTO, Software RAID HOWTO, UMSDOS 
HOWTO, Ext2fs Undeletion mini-HOWTO, Hard Disk Upgrade mini-
HOWTO, Large Disk mini-HOWTO, Partition mini-HOWTO, Partition 
Rescue mini-HOWTO, Quota mini-HOWTO 

• Guides 
The Linux Installation and Getting Started Guide includes a section on 
partitioning and preparing a disk for the installation of Linux.  The Linux 
Systems Administrators Guide’s chapter 4 provides good coverage of using 
disks and other storage media. 

• Linux Gazette 
A free magazine distributed as part of the LDP, issue 21 of the Linux 
Gazette includes the article “A non-technical look inside the Ext2 file 
system” 

• Web resources 
http://step.polymtl.ca/~ldd/ext2fs/ext2fs_toc.html  
provides a more indepth technical look at the ext2 file system. The ext2 
home page is located at 
http://web.mit.edu/tytso/www/linux/ext2.html  

A scenar io  
As we progress through this chapter, we will apply the information to help us 
solve problems associated with a very common System Administrator's task - 
installing a new hard disk.  Our scenario is this:   

Our current system has a single hard disk and it only has 10% space free (on a 
good day).  This is causing various problems (which we will discuss during the 
course of this chapter) - needless to say that it is the user directories (off 

/home ) that are using the most space on the system.  As our IT department is 
very poor (we work in a university), we have been budgeting for a new hard 
disk for the past two years - we had bought a new one a year ago but someone 
drove a forklift over it.  The time has finally arrived - we have a brand new 2.5 
gigabyte disk (to complement our existing 500 megabyte one).   

The size of the disk talked about here should give you some 
idea of how old this particular chapter is (about 3 years old).  
Even though today’s disks are much larger the basic ideas still 
apply. 

How do we install it?  What issues should we consider when determining its 
use?   



85321, Systems Administration Chapter 10: Managing File Systems 

David Jones  (20.01.00)  Page 272 

Devices - Gateways to the kernel  

A device is...  

A device is just a generic name for any type of physical or logical system 
component that the operating system has to interact with (or "talk" to). 
Physical devices include such things as hard disks, serial devices (such as 
modems, mouse(s) etc.), CD-ROMs, sound cards and tape-backup drives.   

Logical devices include such things as virtual terminals [every user is 
allocated a terminal when they log in - this is the point at which output to the 
screen is sent (STDOUT) and keyboard input is taken (STDIN)], memory, the 
kernel itself and network ports.   

Device files are...  

Device files are special types of "files" that allow programs to interact with 
devices via the OS kernel. These "files" (they are not actually real files in the 
sense that they do not contain data) act as gateways or entry points into the 
kernel or kernel related "device drivers".   

Device drivers are...  

Device drivers are coded routines used for interacting with devices. They 
essentially act as the "go between" for the low level hardware and the 
kernel/user interface.   

Device drivers may be physically compiled into the kernel (most are) or may 
be dynamically loaded in memory as required.   

/dev  

/dev is the location where most device files are kept. A listing of /dev will 
output the names of hundreds of files. The following is an edited extract from 
the MAKEDEV (a Linux program for making device files - we will examine it 
later) man page on some of the types of device file that exist in /dev:   

Take a look at the man page for MAKEDEV on your system for 
an updated view of this information.  Most of it will still be the 
same. 

• std 
Standard devices.  These include mem - access to physical memory; kmem 
- access to kernel virtual memory;null  -  null device; port - access to I/O 
ports; 

• Virtual Terminals 
This  are  the devices associated with the console.  This is the virtual 
terminal tty_, where can  be  from  0 though 63.  

• Serial Devices 
Serial ports and corresponding dialout device.  For device  ttyS_,  there is 
also the device cua_ which is used to dial out with.  



85321, Systems Administration Chapter 10: Managing File Systems 

David Jones  (20.01.00)  Page 273 

• Pseudo Terminals 
(Non-Physical terminals) The  master  pseudo-terminals  are pty[p-s][0-9a-
f] and the slaves are tty[p-s][0-9a-f]. 

• Parallel Ports 
Standard parallel ports.  The devices  are  lp0,  lp1,  and  lp2.  These 
correspond to ports at 0x3bc, 0x378 and 0x278.  Hence, on  some  
machines, the first printer port may actually be lp1. 

• Bus Mice 
The various bus mice  devices.   These include: logimouse (Logitech bus 
mouse), psmouse  (PS/2-style  mouse),  msmouse   (Microsoft Inport  bus  
mouse) and atimouse (ATI XL bus mouse) and jmouse (J-mouse). 

• Joystick Devices 
Joystick.  Devices js0 and js1. 

• Disk Devices 
Floppy disk devices.  The device fd_ is the  device which  autodetects  the  
format, and the additional devices are fixed format (whose size  is  
indicated in  the  name).   The  other  devices  are named as fd___.  The 
single letter _ identifies the type  of floppy  disk  (d = 5.25" DD, h = 5.25" 
HD, D = 3.5" DD, H = 3.5" HD, E = 3.5" ED).  The number _ represents  
the  capacity of that format in K.  Thus the standard formats are  fd_d360_  
fd_h1200_  fd_D720_ fd_H1440_ and fd_E2880_ 
 
Devices fd0_ through fd3_ are floppy disks  on  the first controller, and 
devices fd4_ through fd7_ are floppy disks on the second controller. 
 
Hard disks.  The device hdx provides  access  to the   whole   disk,   with   
the  partitions  being hdx[0-20].  The four primary  partitions  are  hdx1 
through  hdx4,  with  the  logical partitions being numbered from hdx5 
though hdx20.  (A primary partition  can be made into an extended 
partition, which can hold 4 logical partitions). 
 
Drives hda and hdb are the two on  the  first  controller.   If using the new 
IDE driver (rather than the old HD driver), then hdc and hdd  are  the  two 
drives  on the secondary controller.  These devices can also be used to 
access IDE CD-ROMs if  using  the new IDE driver. 
 
SCSI hard disks.  The partitions are similar to the IDE  disks, but there is a 
limit of 11 logical partitions (sd_5 through sd_15).   This  is  to  allow there 
to be 8 SCSI disks. 
 
Loopback  disk  devices.   These allow you to use a regular file as a block 
device.   This  means  that images  of  file systems can be mounted, and 
used as normal.   There are  8  devices,  loop0  through loop7. 

• Tape Devices 
SCSI tapes.  These are the rewinding tape devicest_ and the non-rewinding 
tape device nst_. 
 
QIC-80 tapes.  The devices are rmt8, rmt16, tape-d, and tape-reset.  



85321, Systems Administration Chapter 10: Managing File Systems 

David Jones  (20.01.00)  Page 274 

 
Floppy driver tapes (QIC-117).  There are 4 methods of access depending 
on the floppy tape drive.   For each  of  access methods 0, 1, 2 and 3, the 
devices rft_ (rewinding) and nrft_ (non-rewinding) are created.   

• CD-ROM Devices 
SCSI CD players.  Sony CDU-31A CD player.  Mitsumi CD player.  Sony 
CDU-535 CD player.  LMS/Philips CD player. 
 
Sound Blaster CD player.  The kernel is capable  of supporting  16 CD-
ROMs, each of which is accessed as sbpcd[0-9a-f].  These are assigned in 
groups  of  4 to  each controller.  

• Audio 
These are the audio devices used  by  the  sound driver.   These  include 
mixer, sequencer, dsp, and audio. 
 
Devices for the PC Speaker sound driver.  These are pcmixer.  pxsp, and 
pcaudio. 

• Miscellaneous 
Generic  SCSI devices.  The devices created are sg0 through sg7.  These 
allow arbitrary commands  to  be sent  to any SCSI device.  This allows for 
querying information about the device, or  controlling  SCSI devices  that  
are  not  one of disk, tape or CD-ROM (e.g. scanner, writable CD-ROM).  

 

While the /dev directory contains the device files for many 
types of devices, only those devices that have device drivers 
present in the kernel can be used.  For example, while your 
system may have a /dev/sbpcd, it doesn’t mean that your 
kernel can support a Sound Blaster CD.  To enable the support, 
the kernel will have to be recompiled with the Sound Blaster 
driver included - a process we will examine in a later chapter.  

Physical characteristics of device files  

If you were to examine the output of the ls -al command on a device file, 
you’d see something like:   

psyche:~/sanotes$ ls -al /dev/console 
crw--w--w-   1 jamiesob users      4,   0 Mar 31 09:28 /dev/console 

In this case, we are examining the device file for the console. There are two 
major differences in the file listing of a device file from that of a "normal" file, 
for example:   

psyche:~/sanotes$ ls -al iodev.html 
-rw-r--r--   1 jamiesob users   7938 Mar 31 12:49 iodev.html  

The first difference is the first character of the "file permissions" grouping - 
this is actually the file type. On directories this is a "d", on "normal" files it 
will be blank but on devices it will be "c" or "b". This character indicates c for 



85321, Systems Administration Chapter 10: Managing File Systems 

David Jones  (20.01.00)  Page 275 

character mode or b for block mode. This is the way in which the device 
interacts - either character by character or in blocks of characters.   

For example, devices like the console output (and input) character by 
character. However, devices like hard disks read and write in blocks. You can 
see an example of a block device by the following:   

psyche:~/sanotes$ ls -al /dev/hda 
brw-rw----   1 root     disk       3,   0 Apr 28  1995 /dev/hda 

(hda  is the first hard drive)   
The second difference is the two numbers where the file size field usually is on 
a normal file. These two numbers (delimited by a comma) are the major and 
minor device numbers.   

Major and minor device numbers are...  

Major and minor device numbers are the way in which the kernel determines 
which device is being used, therefore what device driver is required. The 
kernel maintains a list of its available device drivers, given by the major 
number of a device file. When a device file is used (we will discuss this in the 
next section), the kernel runs the appropriate device driver, passing it the minor 
device number. The device driver determines which physical device is being 
used by the minor device number. For example:   

psyche:~/sanotes$ ls -al /dev/hda 
brw-rw----   1 root     disk       3,   0 Apr 28  1995 /dev/hda 
psyche:~/sanotes$ ls -al /dev/hdb  
brw-rw----   1 root     disk       3,  64 Apr 28  1995 /dev/hdb  

What this listing shows is that a device driver, major number 3, controls both 
hard drives hda and hdb. When those devices are used, the device driver will 
know which is which (physically) because hda has a minor device number of 0 
and hdb  has a minor device number of 64.   

Finding the devices on your system 

The /proc file system provides access to certain values within the kernel of the 
operating system.  This means you can’t copy files into the /proc directory, 
most of the directory structure is read only.  Instead you read the files under 
/proc to find out information about the configuration of your system and in 
particular the kernel. 

For example, the file /proc/cpuinfo contains information about the CPU of 
your system.     

[root@faile /root]# cat /proc/cpuinfo  
processor : 0 
vendor_id : GenuineIntel 
cpu family : 5 
model  : 8 
model name : Mobile Pentium MMX 
stepping : 1 
cpu MHz  : 233.867806 
fdiv_bug : no 
hlt_bug  : no 
sep_bug  : no 
f00f_bug : yes 



85321, Systems Administration Chapter 10: Managing File Systems 

David Jones  (20.01.00)  Page 276 

coma_bug : no 
fpu  : yes 
fpu_exception : yes 
cpuid level : 1 
wp  : yes 
flags  : fpu vme de pse tsc msr mce cx8 mmx 
bogomips : 466.94 

One of the other files in the proc file system is called devices.  As you might 
expect it contains a list of the devices for which device drivers exist in your 
machine’s kernel. 

[root@faile /root]# cat /proc/devices  
Character devices: 
  1 mem 
  2 pty 
  3 ttyp 
  4 ttyS 
  5 cua 
  7 vcs 
 10 misc 
 14 sound 
 29 fb 
 36 netlink 
128 ptm 
136 pts 
162 raw 
254 pcmcia 
 
Block devices: 
  1 ramdisk 
  2 fd 
  3 ide0 
  9 md 
 22 ide1 

Many UNIX commands use the /proc file system including ps, top and uptime.  
The procinfo command is another useful command for displaying system 
status information from /proc. 

[root@faile /root]# procinfo 
Linux 2.2.12-20 (root@porky.devel.redhat.com) (gcc egcs-2.91.66) #1 1CPU 
[faile] 
Memory:      Total        Used        Free      Shared     Buffers      
Cached 
Mem:        127948      124180        3768      108864        7336       
61144 
Swap:        72252         128       72124 
 
Bootup: Wed Jan 12 08:52:02 2000    Load average: 0.02 0.06 0.07 1/88 1034 
 
user  :       0:03:05.92   5.5%  page in :    24920  disk 1:     5274r    
4018w 
nice  :       0:00:00.07   0.0%  page out:     6665 
system:       0:00:47.27   1.4%  swap in :        1 
idle  :       0:52:11.09  93.1%  swap out:       32 
uptime:       0:56:04.34         context :   621650 
 
irq  0:    336435 timer                 irq  7:         0 MSS audio codec 
[0]   
irq  1:     12419 keyboard              irq  8:         1 rtc                   
irq  2:         0 cascade [4]           irq 11:         4 i82365                
irq  3:      7532 3c589_cs              irq 12:     14187 PS/2 Mouse            
irq  4:         5                       irq 13:         1 fpu                   



85321, Systems Administration Chapter 10: Managing File Systems 

David Jones  (20.01.00)  Page 277 

irq  5:         2                       irq 14:    239393 ide0                  
irq  6:         3                       irq 15:     33230 ide1       

Device files and Device drivers 

The presence of a device file on your system does not mean you can actually 
use that device.  You also need the device driver.  The content of the file 
/proc/devices is the list of device drivers in your kernel.  To use a particular 
device you need to have both the device driver and the device file. 

Remember, the device file is simply an interface to the device driver.  The 
device file doesn’t know how to talk to the device. 

For example, my laptop computer has all the device files for SCSI hard drives 
(/dev/sda1 /dev/sda2 etc).  However, I still can’t use SCSI hard-drives with the 
laptop because the kernel for Linux does not contain any device drivers for 
SCSI drives.  Look at the content of the /proc/devices file in the previous 
example. 

Why use device files?  

It may seem using files is a roundabout method of accessing devices - what are 
the alternatives?   

Other operating systems provide system calls to interact with each device. This 
means that each program needs to know the exact system call to talk to a 
particular device.   
With UNIX and device files, this need is removed. With the standard open, 
read, write, append etc. system calls (provided by the kernel), a program may 
access any device (transparently) while the kernel determines what type of 
device it is and which device driver to use to process the call.  [You will 
remember from Operating Systems that system calls are the services provided 
by the kernel for programs.]    

Using files also allows the system administrator to set permissions on 
particular devices and enforce security - we will discuss this in detail later.   

The most obvious advantage of using device files is shown by the way in 
which as a user, you can interact with them.  For example, instead of writing a 
special program to play .AU sound files, you can simply:   

psyche:~/sanotes$ cat test.au > /dev/audio    

This command pipes the contents of the test.au file into the audio device.  Two 
things to note: 1)  This will only work for systems with audio (sound card) 
support compiled into the kernel (i.e. device drivers exist for the device file) 
and 2)  this will only work for .AU files - try it with a .WAV and see (actually, 
listen) what happens.  The reason for this is that .WAV (a Windows audio 
format) has to be interpreted first before it can be sent to the sound card.   

 

You will not probably need to be the root user to perform the 
above command as the /dev/audio device has write 
permissions to all users.  However, don’t cat anything to a 
device unless you know what you are doing - we will discuss 
why later.  



85321, Systems Administration Chapter 10: Managing File Systems 

David Jones  (20.01.00)  Page 278 

Creating device files  

There are two ways to create device files - the easy way or the hard way!   

The easy way involves using the Linux command MAKEDEV. This is actually a 
script that can be found in the /dev directory . MAKEDEV accepts a number of 
parameters (you can check what they are in the man pages. In general, 
MAKEDEV is run as:   

/dev/MAKEDEV device 

where device is the name of a device file. If for example, you accidentally 
erased or corrupted your console device file (/dev/console ) then you’d 
recreate it by issuing the commend:   

/dev/MAKEDEV console 

NOTE! This must be done as the root user   

However, what if your /dev directory had been corrupted and you lost the 

MAKEDEV script? In this case you’d have to manually use the mknod command.   

With the mknod command you must know the major and minor device 
number as well as the type of device (character or block). To create a device 
file using mknod, you issue the command:   

mknod device_file_name device_type major_number minor_number 

For example, to create the device file for COM1 a.k.a. /dev/ttys0 (usually 
where the mouse is connected) you’d issue the command:   

mknod /dev/ttyS0 c 4 240 

Ok, so how do you know what type a device file is and what major and minor 
number it has so you can re-create it? The scouting (or is that the cubs?) 
solution to every problem in the world, be prepared, comes into play. Being a 
good system administrator, you’d have a listing of every device file stored in a 
file kept safely on disk. You’d issue the command:   

ls -al /dev > /mnt/device_file_listing 

before you lost your /dev directory in a cataclysmic disaster, so you could read 
the file and recreate the /dev structure (it might also be smart to copy the 
MAKEDEV script onto this same disk just to make your life easier :).   

MAKEDEV is only found on Linux systems.  It relies on the fact 
that the major and minor devices numbers for the system are 
hard-coded into the script - running MAKEDEV on a non-Linux 
system won’t work because:   

The device names are different  

The major and minor numbers of similar devices are different  

Note however that similar scripts to MAKEDEV can be found on 
most modern versions of UNIX.  



85321, Systems Administration Chapter 10: Managing File Systems 

David Jones  (20.01.00)  Page 279 

The use and abuse of device files  

Device files are used directly or indirectly in every application on a Linux 
system. When a user first logs in, they are assigned a particular device file for 
their terminal interaction. This file can be determined by issuing the 
command:   

tty 

For example:   

psyche:~/sanotes$ tty 
/dev/ttyp1 

psyche:~/sanotes$ ls -al /dev/ttyp1 
crw-------   1 jamiesob tty4, 193 Apr  2 21:14 /dev/ttyp1   

Notice that as a user, I actually own the device file! This is so I can write to the 
device file and read from it. When I log out, it will be returned to:   

c---------   1 root     root       4, 193 Apr  2 20:33 
/dev/ttyp1       

Try the following:   

read X < /dev/ttyp1 ; echo "I wrote $X" 
echo "hello there" > /dev/ttyp1  

You should see something like:   

psyche:~/sanotes$ read X < /dev/ttyp1 ; echo "I wrote $X"  
hello 
I wrote hello 

psyche:~/sanotes$ echo "hello there" > /dev/ttyp1  
hello there  

A very important device file is that which is assigned to your hard disk. In my 
case /dev/hda  is my primary hard disk, its device file looks like:   

brw-rw----   1 root     disk       3,   0 Apr 28  1995 /dev/hda   

Note that as a normal user, I can’t directly read and write to the hard disk 
device file - why do you think this is?   

Reading and writing to the hard disk is handled by an intermediary called the 
file system.  We will examine the role of the file system in later sections, but 
for the time being, you should be aware that the file system decides how to use 
the disk, how to find data and where to store information about what is on the 
disk.   

Bypassing the file system and writing directly to the device file  is a very 
dangerous thing - device drivers have no concept of file systems, files or even 
the data that is stored in them; device drivers are only interested in reading and 
writing chunks of data (called blocks) to physical sectors of the disk.  For 
example, by directly writing a data file to a device file, you are effectively 
instructing the device driver to start writing blocks of data onto the disk from 
where ever the disk head was sitting!  This can (depending on which sector and 
track the disk was set to) potentially wipe out the entire file structure, boot 
sector and all the data. Not a good idea to try it. NEVER should you issue a 
command like:   



85321, Systems Administration Chapter 10: Managing File Systems 

David Jones  (20.01.00)  Page 280 

cat some_file > /dev/hda1   

As a normal user, you can’t do this - but you can as root!   

Reading directly from the device file is also a problem.  While not physically 
damaging the data on the disk, by allowing users to directly read blocks, it is 
possible to obtain information about the system that would normally be 
restricted to them.  For example,  was someone clever enough to obtain a copy 
of the blocks on the disk where the shadow password file resided (a file 
normally protected by file permissions so users can view it), they could 
potentially reconstruct the file and run it through a crack program.   

Exercises  

10.1. Use the tty command to find out what device file you are currently 
logged in from.  In your home directory, create a device file called 
myterm  that has the same major and minor device number.  Log into 
another session and try redirecting output from a command to myterm.  
What happens?  

10.2. Use the tty command to find out what device file you are currently 
logged in on. Try using redirection commands to read and write directly 
to the device. With another user (or yourself in another session) change 
the permissions on the device file so that the other user can write to it 
(and you to theirs). Try reading and writing from each other’s device 
files.   

10.3. Log into two terminals as root. Determine the device file used by one of 
the sessions, take note of its major and minor device number. Delete the 
device file - what happens to that session. Log out of the session - now 
what happens? Recreate the device file.   

Devices, Par titions and File systems  

Device files and partitions  

Apart from general device files for entire disks, individual device files for 
partitions exist. These are important when trying to understand how individual 
"parts" of a file hierarchy may be spread over several types of file system, 
partitions and physical devices.   

Partitions are non-physical (I am deliberately avoiding the use of the word 
"logical" because this is a type of partition) divisions of a hard disk. IDE Hard 
disks may have 4 primary partitions, one of which must be a boot partition if 
the hard disk is the primary (modern systems have primary and secondary disk 
controllers) master (first hard disk) [this is the partition BIOS attempts to load 
a bootstrap program from at boot time].   

Each primary partition can be marked as an extended partition which can be 
further divided into four logical partitions. By default, Linux provides device 
files for the four primary partitions and 4 logical partitions per 
primary/extended partition. For example, a listing of the device files for my 
primary master hard disk reveals:   



85321, Systems Administration Chapter 10: Managing File Systems 

David Jones  (20.01.00)  Page 281 

brw-rw----   1 root     disk       3,   0 Apr 28  1995 /dev/hda 
brw-rw----   1 root     disk       3,   1 Apr 28  1995 /dev/hda1 
brw-rw----   1 root     disk       3,  10 Apr 28  1995 /dev/hda10 
brw-rw----   1 root     disk       3,  11 Apr 28  1995 /dev/hda11 
brw-rw----   1 root     disk       3,  12 Apr 28  1995 /dev/hda12 
brw-rw----   1 root     disk       3,  13 Apr 28  1995 /dev/hda13 
brw-rw----   1 root     disk       3,  14 Apr 28  1995 /dev/hda14 
brw-rw----   1 root     disk       3,  15 Apr 28  1995 /dev/hda15 
brw-rw----   1 root     disk       3,  16 Apr 28  1995 /dev/hda16 
brw-rw----   1 root     disk       3,   2 Apr 28  1995 /dev/hda2 
brw-rw----   1 root     disk       3,   3 Apr 28  1995 /dev/hda3 
brw-rw----   1 root     disk       3,   4 Apr 28  1995 /dev/hda4 
brw-rw----   1 root     disk       3,   5 Apr 28  1995 /dev/hda5 
brw-rw----   1 root     disk       3,   6 Apr 28  1995 /dev/hda6 
brw-rw----   1 root     disk       3,   7 Apr 28  1995 /dev/hda7 
brw-rw----   1 root     disk       3,   8 Apr 28  1995 /dev/hda8 
brw-rw----   1 root     disk       3,   9 Apr 28  1995 /dev/hda9      

Partitions are usually created by using a system utility such as fdisk. 
Generally fdisk will ONLY be used when a new operating system is installed 
or a new hard disk is attached to a system.   

Our existing hard disk would be /dev/hda1 (we will assume 
that we are using an IDE drive, otherwise we’d be using SCSI 
devices /dev/sd*).   

Our new hard disk (we’ll make it a slave to the first) will be 
/dev/hdb1.  

Partitions and file systems  

Every partition on a hard disk has an associated file system (the file system 
type is actually set when fdisk  is run and a partition is created). For example, 
in DOS machines, it was usual to devote the entire hard disk (therefore the 
entire disk contained one primary partition) to the FAT (File Allocation Table) 
based file system. This is generally the case for most modern operating 
systems including Windows 95, Win NT and OS/2.   

However, there are occasions when you may wish to run multiple operating 
systems off the one disk; this is when a single disk will contain multiple 
partitions, each possibly containing a different file system.   

With UNIX systems, it is normal procedure to use multiple partitions in the file 
system structure. It is quite possible that the file system structure is spread over 
multiple partitions and devices, each a different "type" of file system.   

What do I mean by "type" of file system? Linux can support (or "understand", 
access, read and write to) many types of file systems including:  minix, ext, 
ext2, umsdos, msdos, proc, nfs, iso9660, xenix, Sysv, coherent, hpfs. 

(There is also support for the Windows 95 and Win NT file system). A file 
system is simply a set or rules and algorithms for accessing files. Each system 
is different; one file system can’t read the other.   Like device drivers, file 
systems are compiled into the kernel - only file systems compiled into the 
kernel can be accessed by the kernel.   



85321, Systems Administration Chapter 10: Managing File Systems 

David Jones  (20.01.00)  Page 282 

 

To discover what file systems your system supports,  you can 
display the contents of the /proc/filesystems file.  

On our new disk, if we were going to use a file system that was 
not supported by the kernel, we would have to recompile the 
kernel at this point.  

Partitions and Blocks  

The smallest unit of information that can be read from or written to a disk is a 
block. Blocks can’t be split up - two files can’t use the same block, therefore 
even if a file only uses one byte of a block, it is still allocated the entire block.   

When partitions are created, the first block of every partition is reserved as the 
boot block. However, only one partition may act as a boot partition. BIOS 
checks the partition table of the first hard disk at boot time to determine which 
partition is the boot partition. In the boot block of the boot partition there exists 
a small program called a bootstrap loader - this program is executed at boot 
time by BIOS and is used to launch the OS. Systems that contain two or more 
operating systems use the boot block to house small programs that ask the user 
to chose which OS they wish to boot.  One of these programs is called lilo and 
is provided with Linux systems.   

The second block on the partition is called the superblock. It contains all the 
information about the partition including information on:   

• The size of the partition   

• The physical address of the first data block   

• The number and list of free blocks   

• Information of what type of file system uses the partition   

• When the partition was last modified   

The remaining blocks are data blocks. Exactly how they are used and what 
they contain are up to the file system using the partition.   

Using the partitions  

So how does Linux use these partitions and file systems?   

Linux logically attaches (this process is called mounting) different partitions 
and devices to parts of the directory structure. For example, a system may 
have:   

/ mounted to /dev/hda1 
/usr mounted to /dev/hda2 
/home mounted to /dev/hda3 
/usr/local mounted to /dev/hda4 
/var/spool mounted to /dev/hdb1 
/cdrom mounted to /dev/cdrom 
/mnt mounted to /dev/fd0 

Yet to a user of the system, the physical location of the different parts of the 
directory structure is transparent!   

How does this work?   



85321, Systems Administration Chapter 10: Managing File Systems 

David Jones  (20.01.00)  Page 283 

The Virtual File System  

The Linux kernel contains a layer called the VFS (or Virtual File System).  
The VFS processes all file-oriented IO system calls.  Based on the device that 
the operation is being performed on, the VFS decides which file system to use 
to further process the call.   

The exact list of processes that the kernel goes through when a system call is 
received follows along the lines of:   

• A process makes a system call.  

• The VFS decides what file system is associated with the device file that the 
system call was made on.  

• The file system uses a series of calls (called Buffer Cache Functions) to 
interact with the device drivers for the particular device.  

• The device drivers interact with the device controllers (hardware) and the 
actual required processes are performed on the device.  

Figure 15.1 represents this.  

F i g u r e  1 5 . 1  
T h e  V i r t u a l  F i l e  S y s t e m  

 



85321, Systems Administration Chapter 10: Managing File Systems 

David Jones  (20.01.00)  Page 284 

Dividing up the file hierarchy - why?  

Why would you bother partitioning a disk and using different partitions for 
different directories?   

The reasons are numerous and include: 

Separation Issues  

Different directory branches should be kept on different physical partitions for 
reasons including:   

• Certain directories will contain data that will only need to be read, others 
will need to be both read and written. It is possible (and good practice) to 
mount these partitions restricting such operations.   

• Directories including /tmp and /var/spool  can fill up with files very 
quickly, especially if a process becomes unstable or the system is 
purposely flooded with email. This can cause problems.  For example, let 
us assume that the /tmp directory is on the same partition as the /home 
directory.  If the /tmp directory causes the partition to be filled no user 
will be able to write to their /home directory, there is no space.  If /tmp 
and /home are on separate partitions the filling of the /tmp partition will 
not influence the /home directories.   

• The logical division of system software, local software and home 
directories all lend themselves to separate partitions   

Backup Issues  

These include:   

• Separating directories like /usr/local onto separate partitions makes 
the process of an OS upgrade easier - the new OS version can be installed 
over all partition except the partition that the /usr/local system exists 
on.  Once installation is complete the /usr/local partition can be re-
attached.   

• The actual size of the partition can make it easier to perform backups - it 
isn’t as easy to backup a single 2.1 Gig partition as it is to backup four 500 
Meg partitions.  This does depend on the backup medium you are using.  
Some medium will handle a 2.1 Gb partition quite easily. 

Performance Issues 

By spreading the file system over several partitions and devices, the IO load is 
spread around. It is then possible to have multiple seek operations occurring 
simultaneously - this will improve the speed of the system.   

While splitting the directory hierarchy over multiple partitions does address the 
above issues, it isn’t always that simple.  A classic example of this is a system 
that contained its Web programs and data  in the /var/spool  directory.  
Obviously the correct location for this type of program is the /usr branch - 
probably somewhere off the /usr/local  system.  The reason for this strange 



85321, Systems Administration Chapter 10: Managing File Systems 

David Jones  (20.01.00)  Page 285 

location? ALL the other partitions on the system were full or nearly full - this 
was the only place left to install the software!  And the moral of the story is?  
When partitions are created for different branches of the file hierarchy, the 
future needs of the system must be considered - and even then, you won’t 
always be able to adhere to what is "the technically correct" location to place 
software.  

Scenario Update 

At this point, we should consider how we are going to partition our new hard 
disk.  As given by the scenario, our /home directory is using up a lot of space 
(we would find this out by using the du command).   

We have the option of devoting the entire hard disk to the /home structure but 
as it is a 2.5 Gig disk we could probably afford to divide it into a couple of 
partitions.  As the /var/spool  directory exists on the same partition as root, 
we have a potential problem of our root partition filling up - it might be an idea 
to separate this.  As to the size of the partitions?  As our system has just been 
connected to the Internet, our users have embraced FTP - our /home structure 
is consuming 200 Megabytes but we expect this to increase by a factor of 10 
over the next 2 years.  Our server is also receiving increased volumes of email, 
so our spool directory will have to be large.  A split of 2 Gigabytes to 500 
Megabytes will probably be reasonable.   

To create our partitions, we will use the fdisk program.  We will create two 
primary partitions, one of 2 Gigabytes and one of 500 Megabytes - these we 
will mark as Linux partitions.  

The L inux Native File System - ext2  

Overview  

Historically, Linux has had several native file systems.  Originally there was 
Minix which supported file systems of up to 64 megabytes in size and 14 
character file names.  With the advent of the virtual file system (VFS) and 
support for multiple file systems, Linux has seen the development of Ext FS 
(Extended File System), Xia FS and the current ext2 FS.   

ext2  (the second extended file system) has longer file names (255 characters), 
larger file sizes (2 GB) and bigger file system support (4 TB) than any of the 
existing Linux file systems.  In this section, we will examine how ext2 works.   

I-Nodes  

ext2  use a complex but extremely efficient method of organising block 
allocation to files. This system relies on data structures called I-Nodes. Every 
file on the system is allocated an I-Node - there can never be more files than 
I-Nodes.   



85321, Systems Administration Chapter 10: Managing File Systems 

David Jones  (20.01.00)  Page 286 

 

This is something to consider when you format a partition and 
create the file system - you will be asked how many I-Nodes you 
wish create. Generally, ten percent of the file system should be 
I-Nodes. This figure should be increased if the partition will 
contain lots of small files or decreased if the partition will 
contain few but large files.  

Figure 15.2 is a graphical representation on an I-Node.   

 
F i g u r e  1 5 . 2  

I - N o d e  S t r u c t u r e    

Typically an I-Node will contain:   

• The owner (UID) and group owner (GID) of the file.   

• The type of file - is the file a directory or another type of special file?   

• User access permissions - which users can do what with the file   

• The number of hard links to the file - the same physical file may be 
accessed under several names; we will examine how later.   

• The size of the file   

• The time the file was last modified   



85321, Systems Administration Chapter 10: Managing File Systems 

David Jones  (20.01.00)  Page 287 

• The time the I-Node was last changed - if permissions or information on 
the file change then the I-Node is changed.   

• The addresses of 13 data blocks - data blocks are where the contents of the 
file are placed.   

• A single indirect pointer - this points to a special type of block called a 
single indirect block. This is a block that contains the addresses of at least 
256 other data blocks; the exact number depends of the file system and 
implementation.   

• A double indirect pointer - this points to a special type of block called a 
double indirect block. This block points to a number of single indirect 
blocks.   

• A triple indirect pointer - this points to a special type of block called a 
triple indirect block . This block points to a number of double indirect 
blocks.   

Using this system, ext2 can cater for a file two gigabytes in size!   
However, just because an I-Node can access all those data blocks doesn’t mean 
that they are automatically allocated to the file when it is created - obviously! 
As the file grows, blocks are allocated, starting with the first direct 13 data 
blocks, then moving on to the single indirect blocks, then to the double, then to 
the triple.   

Note that the actual name of the file is not stored in the I-Node. This is because 
the names of files are stored in directories, which are themselves files.   

Physical Structure and Features  

ext2  uses a decentralised file system management scheme involving a "block 
group" concept.  What this means is that the file systems are divided into a 
series of logical blocks.  Each block contains a copy of critical information 
about the file systems (the super block and information about the file system) 
as well as an I-Node, and data block allocation tables and blocks.  Generally, 
the information about a file (the I-Node) will be stored close to the data 
blocks.  The entire system is very robust and makes file system recovery less 
difficult.   

The ext2  file system also has some special features which make it stand out 
from existing file systems including:   

• Logical block size - the size of data blocks can be defined when the file 
system is created; this is not dependent on physical data block size.  

• File system state checks - the file system keeps track of how many times it 
was "mounted " (or used) and what state it was left in at the last shutdown.  

• The file system reserves 5% of the file system for the root user - this means 
that if a user program fills a partition, the partition is still useable by root 
(for recovery) because there is reserve space.  

A more comprehensive description of the ext2 file system can be found at 
http://web.mit.edu/tytso/www/linux/ext2.html  . 



85321, Systems Administration Chapter 10: Managing File Systems 

David Jones  (20.01.00)  Page 288 

dumpe2fs Command 

The dumpe2fs command is useful for providing information about the super 
block and blocks group of a file system. 

[root@faile /root]# dumpe2fs /dev/hda1        
dumpe2fs 1.15, 18-Jul-1999 for EXT2 FS 0.5b, 95/08/09 
Filesystem volume name:   <none> 
Last mounted on:          <not available> 
Filesystem UUID:          459a17c0-7b5c-11d3-93ed-b8c49e459f04 
Filesystem magic number:  0xEF53 
Filesystem revision #:    1 (dynamic) 
Filesystem features:      sparse_super 
Filesystem state:         not clean 
Errors behavior:          Continue 
Filesystem OS type:       Linux 
Inode count:              6024 
Block count:              24066 
Reserved block count:     1203 
Free blocks:              20655 
Free inodes:              5999 
First block:              1 
Block size:               1024 
Fragment size:            1024 
Blocks per group:         8192 
Fragments per group:      8192 
Inodes per group:         2008 
Inode blocks per group:   251 
Last mount time:          Wed Jan 12 08:52:22 2000 
Last write time:          Wed Jan 12 08:52:26 2000 
Mount count:              20 
Maximum mount count:      20 
Last checked:             Sat Jan  1 08:35:59 2000 
Check interval:           15552000 (6 months) 
Next check after:         Thu Jun 29 08:35:59 2000 
Reserved blocks uid:      0 (user root) 
Reserved blocks gid:      0 (group root) 
First inode:              11 
Inode size:    128 
 
 
Group 0: (Blocks 1 -- 8192) 
  Block bitmap at 3 (+2), Inode bitmap at 4 (+3) 
  Inode table at 5 (+4) 
  5290 free blocks, 1983 free inodes, 2 directories 
  Free blocks: 2901-2902, 2905-8192 
  Free inodes: 26-2008 
Group 1: (Blocks 8193 -- 16384) 
  Block bitmap at 8195 (+2), Inode bitmap at 8196 (+3) 
  Inode table at 8197 (+4) 
  7937 free blocks, 2008 free inodes, 0 directories 
  Free blocks: 8448-16384 
  Free inodes: 2009-4016 
Group 2: (Blocks 16385 -- 24065) 
  Block bitmap at 16385 (+0), Inode bitmap at 16386 (+1) 
  Inode table at 16389 (+4) 
  7428 free blocks, 2008 free inodes, 0 directories 
  Free blocks: 16387-16388, 16640-24065 
  Free inodes: 4017-6024 



85321, Systems Administration Chapter 10: Managing File Systems 

David Jones  (20.01.00)  Page 289 

Creating file systems  

mkfs  

Before a partition can be mounted (or used), it must first have a file system 
installed on it - with ext2, this is the process of creating I-Nodes and data 
blocks.   

This process is the equivalent of formatting the partition (similar to MSDOS’s 
"format" command). Under Linux, the command to create a file system is 
called mkfs.   

The command is issued in the following way:   

mkfs  [-c] [ -t fstype ]  filesys [ blocks ] 
eg. 
mkfs -t ext2 /dev/fd0   # Make a ext2 file system on a disk 

where:   

• -c forces a check for bad blocks   

• -t fstype specifies the file system type   

• filesys is either the device file associated with the partition or device 
OR is the directory where the file system is mounted (this is used to erase 
the old file system and create a new one)   

• blocks specifies the number of blocks on the partition to allocate to the 
file system   

• Be aware that creating a file system on a device with an existing file 
system will cause all data on the old file system to be erased.   

Scenario Update 

Having partitioned our disk, we must now install a file system on each 
partition.   

ext2  is the logical choice.  Be aware that this won’t always be the case and you 
should educate yourself on the various file systems available before making a 
choice.   

 Assuming /dev/hdb1  is the 2GB partition and /dev/hdb2 is the 500 MB 
partition, we can create ext2 file systems using the commands:   

mkfs -t ext2 -c /dev/hdb1   
mkfs -t ext2 -c /dev/hdb2   

This assumes the default block size and the default number of I-Nodes.  If we 
wanted to be more specific about the number of I-Nodes and block size, we 
could specify them.  mkfs actually calls other programs to create the file 
system - in the ext2 case, mke2fs.  Generally, the defaults are fine - however, 
if we knew that we were only storing a few large files on a partition, then we’d 
reduce the I-Node to data block ratio.  If we knew that we were storing lots of 
small files on a partition, we’d increase the I-Node to data block ration and 



85321, Systems Administration Chapter 10: Managing File Systems 

David Jones  (20.01.00)  Page 290 

probably decrease the size of the data blocks (there is no point using 4K data 
blocks when the file size average is around 1K).  

Exercises  

10.4. Create an ext2 file system on a floppy disk using the defaults.  Create a 
ext2 file system on a floppy disk with only one I-node.  How much disk 
space do you save using only 1 I-node?  What restriction does this place 
on the floppy disk?   

Mounting and UN-mounting Par titions and 
Devices  

Mount  

To attach a partition or device to part of the directory hierarchy you must 
mount its associated device file.   

To do this, you must first have a mount point - this is simply a directory 
where the device will be attached. This directory will exist on a previously 
mounted device (with the exception of the root directory (/) which is a special 
case) and will be empty. If the directory is not empty, then the files in the 
directory will no longer be visible while the device to mounted to it, but will 
reappear after the device has been disconnected (or unmounted).   

To mount a device , you use the mount command:   

mount [switches] device_file mount_point 

With some devices, mount will detect what type of file system exists on the 
device, however it is more usual to use mount in the form of:   

mount [switches] -t file_system_type device_file mount_point 

Generally, only the root user can use the mount command - mainly due to the 
fact that the device files are owned by root. For example, to mount the first 
partition on the second hard drive off the /usr directory and assuming it 
contained the ext2 file system you’d enter the command:   

mount -t ext2 /dev/hdb1 /usr 

A common device that is mounted is the floppy drive. A floppy disk generally 
contains the msdos file system (but not always) and is mounted with the 
command:   

mount -t msdos /dev/fd0 /mnt 

Note that the floppy disk was mounted under the /mnt directory? This is 
because the /mnt directory is the usual place to temporally mount devices.   
To see what devices you currently have mounted, simply type the command 
mount. Typing it on my system reveals:   

/dev/hda3 on / type ext2 (rw) 
/dev/hda1 on /dos type msdos (rw) 
none on /proc type proc (rw) 



85321, Systems Administration Chapter 10: Managing File Systems 

David Jones  (20.01.00)  Page 291 

/dev/cdrom on /cdrom type iso9660 (ro) 
/dev/fd0 on /mnt type msdos (rw)   

Each line tells me what device file is mounted, where it is mounted, what file 
system type each partition is and how it is mounted (ro = read only, rw = 
read/write). Note the strange entry on line three - the proc file system? This is 
a special "virtual" file system used by Linux systems to store information 
about the kernel, processes and current resource usages. It is actually part of 
the system’s memory - in other words, the kernel sets aside an area of memory 
which it stores information about the system in - this same area is mounted 
onto the file system so user programs can easily gain this information.   

To release a device and disconnect it from the file system, the umount 
command is used. It is issued in the form:   

umount device_file 
or 
umount mount_point 

For example, to release the floppy disk, you’d issue the command:   

umount /mnt 
or 
umount /dev/fd0 

Again, you must be the root user or a user with privileges to do this. You can’t 
unmount a device/mount point that is in use by a user (the user’s current 
working directory is within the mount point) or is in use by a process. Nor can 
you unmount devices/mount points which in turn have devices mounted to 
them.   

All of this begs the question - how does the system know which devices to 
mount when the OS boots?   

Mounting with the /etc/fstab file  

In true UNIX fashion, there is a file which governs the behaviour of mounting 
devices at boot time.  In Linux, this file is /etc/fstab . But there is a problem 
- if the fstab file lives in the  /etc  directory (a directory that will always be 
on the root partition (/)), how does the kernel get to the file without first 
mounting the root partition (to mount the root partition, you need to read the 
information in the /etc/fstab  file!)? The answer to this involves 
understanding the kernel (a later chapter) - but in short, the system cheats! The 
kernel is "told" (how it is told doesn’t concern us yet) on which partition to find 
the root file system; the kernel mounts this in read only mode, assuming the 
Linux native ext2 file system, then reads the fstab  file and re-mounts the 
root partition (and others) according to instructions in the file.   

So what is in the file?   

An example line from the fstab file uses the following format:   

device_file mount_point file_system_type mount_options [n] [n] 

The first three fields are self explanatory; the fourth field, mount_options 
defines how the device will be mounted (this includes information of access 
mode ro/rw, execute permissions and other information) - information on this 
can be found in the mount man pages (note that this field usually contains the 
word "defaults"). The fifth and sixth fields will usually either not be included 



85321, Systems Administration Chapter 10: Managing File Systems 

David Jones  (20.01.00)  Page 292 

or be "1" - these two fields are used by the system utilities dump and fsck  

respectively - see the man pages for details.   

 As an example, the following is my /etc/fstab file:   
/dev/hda5             /                       ext2    defaults        1 1 
/dev/hda1             /boot                   ext2    defaults        1 2 
/dev/cdrom            /mnt/cdrom              iso9660 noauto,owner,ro 0 0 
/dev/hda6             swap                    swap    defaults        0 0 
/dev/fd0              /mnt/floppy             ext2    noauto,owner    0 0 
none                  /proc                   proc    defaults        0 0 
none                  /dev/pts                devpts  gid=5,mode=620  0 0 

This is a fairly standard /etc/fstab file created by installing Redhat 6.1.  Linux 
itself has two main partitions which are used to store files, / and /boot.  /boot is 
a small partition which contains the kernel, LILO configuration and a small 
number of files required to get the system going.  The / file system contains 
every other file on my system.  While this is somewhat okay for a home 
system it would probably be better to split this partition up based on some of 
the guidelines discussed in this chapter. 

The swap partition is required by Linux but doesn’t actually contain files.  It is 
used directly by the kernel.  You can see entries for the CD-ROM and floppy 
drive of the system and for mounting them under the standard /mnt directory.  
Lastly there are the two pseudo file systems proc and pts. 

Scenario Update 

The time has come for us to use our partitions.  The following procedure 
should be followed:   

Mount each partition (one at a time) off /mnt Eg.  

mount -t ext2 -o defaults /dev/hdb1 /mnt  

Copy the files from the directory that is going to reside on the partition TO the 
partition Eg.  

cp - a /home /mnt 

Modify the /etc/fstab  file to mount the partition off the correct directory 
Eg.  

/dev/hdb1  /home  ext2  defaults  1  1  

Test your changes by rebooting and using the partition  

Unmount the partition and remove the old files (or back them up). 

umount /home 
rm -r /home 
mount -t ext2 -o defaults /dev/hdb1 /home 

The new hard disk should be now installed and configured correctly! 

Exercises  

10.5. Mount a floppy disk under the /mnt/floppy  directory.   

10.6. Carefully examine your /etc/fstab file - work out what each entry 
means.   



85321, Systems Administration Chapter 10: Managing File Systems 

David Jones  (20.01.00)  Page 293 

10.7. Change to the /mnt/floppy  directory (while the disk is mounted) - now 
try to unmount the disk - does this work? Why/Why not?   

File Operations   

Creating a file   

When a file is created, the following process is performed:   

• An I-Node is allocated to the file.  
(If one is available)  

• An entry is added to the current directory - remember, the directory is a file 
itself. This entry contains the name of the file and a pointer to I-Node used 
by the file. The link count on the file’s I-Node is set to 1 (any I-Node with a 
link count of 0 is not in use).  

• Any blocks required to store the file contents are allocated.   

Linking files  

As we have previously encountered, there are occasions when you will want to 
access a file from several locations or by several names. The process of doing 
this is called linking.   

 There are two methods of doing this - Hard Linking and Soft Linking.   

 Hard Links  are generated by the following process:   

• An entry is added to the current directory with the name of the link 
together with a pointer to the I-Node used by the original file.   

• The I-Node of the original file is updated and the number of files linked to 
it is incremented.   

Soft Links are generated by the following process:   

• An I-Node is allocated to the soft link file - the type of file is set to soft-
link.   

• An entry is added to the current directory with the name of the link 
together with a pointer to the allocated I-Node.   

• A data block is allocated for the link in which is placed the name of the 
original file.   

Programs accessing a soft link cause the file system to examine the location of 
the original (linked-to) file and then carry out operations on that file. The 
following should be noted about links:   

• Hard links may only be performed between files on the same physical 
partition - the reason for this is that I-Nodes pointers can only point to I-
Nodes of the same partition   

• Any operation performed on the data in link is performed on the original 
file.   

• Any chmod operations performed on a hard link are reflected on both the 
hard link file and the file it is linked to. chmod operations on soft links are 



85321, Systems Administration Chapter 10: Managing File Systems 

David Jones  (20.01.00)  Page 294 

reflected on the original file but not on the soft link - the soft link will 
always have full file permissions (lrwxrwxrwx) .   

So how do you perform these mysterious links?   

ln  

The command for both hard and soft link files is ln. It is executed in the 
following way:   

ln source_file link_file_name   # Hard Links 
or 
ln -s source_file link_file_name# Soft Links 

For example, look at the following operations on links:   

Create the file and check the ls listing:  

psyche:~$ touch base       
psyche:~$ ls -al base 
-rw-r--r--   1 jamiesob users   0 Apr  5 17:09 base 

  Create a soft link and check the ls listing of it and the original file  

psyche:~$ ln -s base softbase  
psyche:~$ ls -al softbase  
lrwxrwxrwx   1 jamiesob users   4 Apr  5 17:09 softbase -> base 
psyche:~$ ls -al base  
-rw-r--r--   1 jamiesob users   0 Apr  5 17:09 base 

  Create a hard link and check the ls listing of it, the soft link and the original 
file  

psyche:~$ ln base hardbase  
psyche:~$ ls -al hardbase  
-rw-r--r--   2 jamiesob users   0 Apr  5 17:09 hardbase 
psyche:~$ ls -al base  
-rw-r--r--   2 jamiesob users   0 Apr  5 17:09 base 
psyche:~$ ls -il base  
132307 -rw-r--r--   2 jamiesob users   0 Apr  5 17:09 base 
psyche:~$ ls -il softbase  
132308 lrwxrwxrwx   1 jamiesob users   4 Apr  5 17:09 softbase ->base 
psyche:~$ ls -il hardbase  
132307 -rw-r--r--   2 jamiesob users   0 Apr  5 17:09 hardbase 

Note the last three operations (checking the I-Node number) - see how the hard 
link shares the I-Node of the original file? Links are removed by simply 
deleting the link with the rm  (or on non-Linux systems unlink) command. 
Note that deleting a file that has soft links is different to deleting a file with 
hard links - deleting a soft-linked file causes the I-Node (thus data blocks) to 
be deallocated - no provision is made for the soft link which is now "pointing" 
to a file that doesn’t exist.   

However, a file with hard links to it has its entry removed from the directory, 
but neither its I-Node nor data blocks are deallocated - the link count on the I-
Node is simply decremented. The I-Node and data blocks will only be 
deallocated when there are no other files hard linked to it.   

Exercises 

10.8. Locate all files on the system that are soft links (Hint: use find).   



85321, Systems Administration Chapter 10: Managing File Systems 

David Jones  (20.01.00)  Page 295 

Checking the file system  

Why Me?  

It is a sad truism that anything that can go wrong will go wrong - especially if 
you don’t have backups! In any event, file system "crashes" or problems are an 
inevitable fact of life for a System Administrator.   

Crashes of a non-physical nature (i.e. the file system becomes corrupted) are 
non-fatal events - there are things a system administrator can do before issuing 
the last rites and restoring from one of their copious backups :)   

You will be informed of the fact that a file system is corrupted by a harmless, 
but feared little messages at boot time, something like:   

Can’t mount /dev/hda1  

If you are lucky, the system will ignore the file system problems and try to 
mount the corrupted partition READ ONLY.   

It is at this point that most people enter a hyperactive frenzy of swearing, 
violent screaming tantrums and self-destructive cranial impact diversions (head 
butting the wall).   

What to do  

It is important to establish that the problem is logical, not physical. There is 
little you can do if a disk head has crashed (on the therapeutic side, taking the 
offending hard disk into the car park and beating it with a stick can produce 
favourable results). A logical crash is something that is caused by the file 
system becoming confused. Things like:   

• Many files using the one data block.   

• Blocks marked as free but being used and vice versa.   

• Incorrect link counts on I-Nodes.   

• Differences in the "size of file" field in the I-Node and the number of data 
blocks actually used.   

• Illegal blocks within files.   

• I-Nodes contain information but are not in any directory entry (these type 
of files, when recovered, are placed in the lost+found directory).   

• Directory entries that point to illegal or unallocated I-Nodes.   

are the product of file system confusion. These problems will be detected and 
(usually) fixed by a program called fsck.   

fsck 

fsck is actually run at boot time on most Linux systems. Every x number of 
boots, fsck will do a comprehensive file system check. In most cases, these 
boot time runs of fsck automatically fix problems - though occasionally you 
may be prompted to confirm some fsck action. If however, fsck reports 



85321, Systems Administration Chapter 10: Managing File Systems 

David Jones  (20.01.00)  Page 296 

some drastic problem at boot time, you will usually be thrown in to the root 
account and issued a message like:   

************************************** 
fsck returned error code - REBOOT NOW! 
**************************************    

It is probably a good idea to manually run fsck on the offending device at 
this point (we will get onto how in a minute).   

At worst, you will get a message saying that the system can’t mount the file 
system at all and you have to reboot. It is at this point you should drag out your 
rescue disks (which of course contain a copy of fsck) and reboot using them. 
The reason for booting from an alternate source (with its own file system) is 
because it is quite possible that the location of the fsck program (/sbin ) has 
become corrupted as has the fsck binary itself! It is also a good idea to run 
fsck only on unmounted file systems.   

Using fsck  

fsck is run by issuing the command:   

fsck file_system 

where file_system is a device or directory from which a device is 
mounted.   

fsck will do a check on all I-Nodes, blocks and directory entries. If it 
encounters a problem to be fixed, it will prompt you with a message. If the 
message asks if fsck can SALVAGE, FIX, CONTINUE, RECONNECT or 
ADJUST, then it is usually safe to let it. Requests involving REMOVE and 
CLEAR should be treated with more caution.   

What caused the problem?  

Problems with the file system are caused by:   

• People turning off the power on a machine without going through the 
shutdown process - this is because Linux uses a very smart READ and 
WRITE disk cache - this cache is only flushed (or written to disk) 
periodically and on shutdown. fsck will usually fix these problems at the 
next boot.   

• Program crashes - problems usually occur when a program is using several 
files and suddenly crashes without closing them. fsck usually easily fixes 
these problems.   

• Kernel and system crashes - the kernel may become unstable (especially if 
you are using new, experimental kernels) and crash the system. Depending 
on the circumstances, the file system will usually be recoverable.   

Exercises  

10.9. Mount the disk created in an earlier exercise.  Copy the contents of your 
home directory to the disk.  Now copy the kernel to it (/vmlinuz ) but 
during the copy eject the disk (the idea is to do this while the light 
which indicates writing to disk is on). Now run fsck on that disk.   



85321, Systems Administration Chapter 10: Managing File Systems 

David Jones  (20.01.00)  Page 297 

Conclusion  
Having read and absorbed this chapter you will be aware that:   

• Linux supports many file systems. 

• The process of using many file systems, partitions and devices acting in 
concert to produce a directory structure allows for greater flexibility, 
performance and system integrity.   

• The implementation of this process requires a number of components 
working in conjunction including: device drivers, device files, the virtual 
file system, specific file systems and user commands. 

Review questions  
10.1 

As a System Administrator, you have been asked to set up a new system. The 
system will contain two hard disks, each 2.5 Gb in size. What issues must you 
consider when installing these disks? What questions should you be asking 
about the usage of the disks?   

10.2 

You have noticed that at boot time, not all the normal messages are appearing 
on the screen. You have also discovered that X-Windows won’t run. Suggest 
possible reasons for this and the solutions to the problems.   

10.3 

A new hard disk has been added to your system to store the print spool in. List 
all the steps in adding this hard disk to the system.   

10.4 

You have just dropped your Linux box while it was running (power was lost 
during the system’s short flight) - the system boots but will not mount the hard 
disk. Discuss possible reasons for the problem and the solutions.   

10.5 

What are links used for? What are the differences between hard and soft links?   

 



85321, Systems Administration Chapter 11: Backups 

David Jones  (20.01.00)  Page 298 

Chapter 
Backups 

Like most of those who study history, he (Napoleon III) learned from the 
mistakes of the past how to make new ones. 

A.J.P. Taylor. 

Introduction 
This is THE MOST IMPORTANT responsibility of the System Administrator. 
Backups MUST be made of all the data on the system.  It is inevitable that 
equipment will fail and that users will "accidentally" delete files.  There should 
be a safety net so that important information can be recovered. 

It isn’t just users who accidentally delete files 

A friend of mine who was once the administrator of a UNIX machine (and 
shall remain nameless, but is now a respected Academic at CQU) committed 
one of the great no-no’s of UNIX Administration.   

Early on in his career he was carefully removing numerous old files for some 
obscure reason when he entered commands resembling the following (he was 
logged in as root when doing this). 

cd / usr/user/panea  notice the mistake 
rm -r *  

The first command contained a typing mistake (the extra space) that meant that 
instead of being in the directory /usr/user/panea he was now in the / 
directory.  The second command says delete everything in the current directory 
and any directories below it.  Result: a great many files removed. 

The moral of this story is that everyone makes mistakes.  Root users, normal 
users, hardware and software all make mistakes, break down or have faults.  
This means you must keep backups of any system. 

Other  Resources 
Other resources which discuss backups and related information include 

• How-tos 
Linux ADSM Mini-Howto,  

• The LAME guide’s chapter on backup and restore procedures 

• The Linux Systems Administrators Guide’s chapter (10) on backups 



85321, Systems Administration Chapter 11: Backups 

David Jones  (20.01.00)  Page 299 

Backups aren’t enough 
Making sure that backups are made at your site isn’t enough.  Backups aren’t 
any good if you can’t restore the information contained.  You must have some 
sort of plan to recover the data.  That plan should take into account all sorts of 
scenarios.  Recovery planning is not covered to any great extent in this text.  
That doesn’t mean it isn’t important.  

Character istics of a good backup strategy 
Backup strategies change from site to site.  What works on one machine may 
not be possible on another.  There is no standard backup strategy.  There are 
however a number of characteristics that need to be considered including 

• ease of use, 

• time efficiency, 

• ease of restoring files, 

• ability to verify backups, 

• tolerance of faulty media, and 

• portabilty to a range of machines. 

Ease of use 

If backups are easy to use, you will use them. AUTOMATE!!  It should be as 
easy as placing a tape in a drive, typing a command and waiting for it to 
complete.  In fact you probably shouldn’t have to enter the command, it should 
be automatically run.   

When backups are too much work 

At many large computing sites operators are employed to 
perform low-level tasks like looking after backups.  Looking 
after backups generally involves obtaining a blank tape, 
labelling it, placing it in the tape drive, waiting for the 
information to be stored on the tape and then storing it away. 

A true story that is told by an experienced Systems 
Administrator is about an operator that thought backups took 
too long to perform.  To solve this problem the operator 
decided backups finished much quicker if you didn’t bother 
putting the tape in the tape drive.  You just labelled the blank 
tape and placed it in storage.   

Quite alright as long as you don’t want to retrieve anything 
from the backups. 



85321, Systems Administration Chapter 11: Backups 

David Jones  (20.01.00)  Page 300 

Time efficiency 

Obtain a balance to minimise the amount of operator, real and CPU time taken 
to carry out the backup and to restore files.  The typical tradeoff is that a quick 
backup implies a longer time to restore files.  Keep in mind that you will in 
general perform more backups than restores. 

On some large sites, particular backup strategies fail because there aren’t 
enough hours in a day.  Backups scheduled to occur every 24 hours fail 
because the previous backup still hasn't finished.  This obviously occurs at 
sites which have large disks. 

Ease of restoring files 

The reason for doing backups is so you can get information back.  You will 
have to be able to restore information ranging from a single file to an entire file 
system.  You need to know on which media the required file is and you need to 
be able to get to it quickly. 

This means that you will need to maintain a table of contents and label media 
carefully. 

Ability to verify backups 

YOU MUST VERIFY YOUR BACKUPS.  The safest method is once the 
backup is complete, read the information back from the media and compare it 
with the information stored on the disk.  If it isn’t the same then the backup is 
not correct. 

Well that is a nice theory but it rarely works in practice.  This method is only 
valid if the information on the disk hasn't changed since the backup started. 
This means the file system cannot be used by users while a backup is being 
performed or during the verification.  Keeping a file system unused for this 
amount of time is not often an option. 

Other quicker methods include  

• restoring a random selection of files from the start, middle and end of the 
backup, 
If these particular files are retrieved correctly the assumption is that all of 
the files are valid. 

• create a table of contents during the backup; afterwards read the contents of 
the tape and compare the two. 

These methods also do not always work.  Under some conditions and with 
some commands the two methods will not guarantee that your backup is 
correct. 

Tolerance of faulty media 

A backup strategy should be able to handle 

• faults in the media, and 



85321, Systems Administration Chapter 11: Backups 

David Jones  (20.01.00)  Page 301 

• physical dangers. 

There are situations where it is important that 

• there exist at least two copies of full backups of a system, and 

• that at least one set should be stored at another site. 

Consider the following situation.   

A site has one set of full backups stored on tapes.  They are currently 
performing another full backup of the system onto the same tapes.  What 
happens when the backup system is happily churning away when it gets about 
halfway and crashes (the power goes off, the tape drive fails etc).  This could 
result in the both the tape and the disk drive being corrupted.  Always maintain 
duplicate copies of full backups. 

An example of the importance of storing backups off site was the Pauls ice-
cream factory in Brisbane.  The factory is located right on the riverbank and 
during the early 1970’s Brisbane suffered problems caused by a major flood.  
The Pauls’ computer room was in the basement of their factory and was 
completely washed out.  All the backups were kept in the computer room. 

Portabilty to a range of platforms 

There may be situations where the data stored on backups must be retrieved 
onto a different type of machine.  The ability for backups to be portable to 
different types of machine is often an important characteristic.   

For example: 

The computer currently being used by a company is the last in its line.  The 
manufacturer is bankrupt and no one else uses the machine.  Due to unforeseen 
circumstances the machine burns to the ground.  The Systems Administrator 
has recent backups available and they contain essential data for this business.  
How are the backups to be used to reconstruct the system? 

Considerations for  a backup strategy 
Apart from the above characteristics, factors that may affect the type of backup 
strategy implemented will include 

• the available commands 
The characteristics of the available commands limit what can be done. 

• available hardware 
The capacity of the backup media to be used also limits how backups are 
performed.  In particular how much information can the media hold? 

• maximum expected size of file systems 
The amount of information required to be backed up and whether or not the 
combination of the available software and hardware can handle it.  A 
suggestion is that individual file systems should never contain more 
information than can fit easily onto the backup media. 



85321, Systems Administration Chapter 11: Backups 

David Jones  (20.01.00)  Page 302 

• importance of the data 
The more important the data is, the more important that it be backed up 
regularly and safely. 

• level of data modification 
The more data being created and modified, the more often it should be 
backed up.  For example the directories /bin and /usr/bin will hardly 
ever change so they rarely need backing up.  On the other hand directories 
under /home are likely to change drastically every day. 

The components of backups 
There are basically three components to a backup strategy.  The 

• scheduler 
Decides when the backup is performed. 

• transport, and 
The command that moves the backup from the disks to the backup media. 

• media 
The actual physical device on which the backup is stored.  

Scheduler 

The scheduler is the component that decides when backups should be 
performed and how much should be backed up.  The scheduler could be the 
root user or a program, usually cron (discussed in a later chapter). 

The amount of information that the scheduler backs up can have the following 
categories 

• full backups, 
All the information on the entire system is backed up.  This is the safest 
type but also the most expensive in machine and operator time and the 
amount of media required.  

• partial backups, or 
Only the busier and more important file systems are backed up.  One 
example of a partial backup might include configuration files (like 
/etc/passwd), user home directories and the mail and news spool 
directories.  The reasoning is that these files change the most and are the 
most important to keep a track of.  In most instances this can still take 
substantial resources to perform. 

• incremental backups. 
Only those files that have been modified since the last backup are backed 
up.  This method requires less resources but a large amount of incremental 
backups make it more difficult to locate the version of a particular file you 
may desire. 



85321, Systems Administration Chapter 11: Backups 

David Jones  (20.01.00)  Page 303 

Transport 

The transport is a program that is responsible for placing the backed-up data 
onto the media.  There are quite a number of different programs that can be 
used as transports.  Some of the standard UNIX transport programs are 
examined later in this chapter. 

There are two basic mechanisms that are used by transport programs to obtain 
the information from the disk 

• image, and 

• through the file system. 

Image transports 

An image transport program bypasses the file system and reads the information 
straight off the disk using the raw device file.  To do, this the transport 
program needs to understand how the information is structured on the disk.  
This means that transport programs are linked very closely to exact file 
systems since different file systems structure information differently. 

Once read off the disk, the data is written byte by byte from disk onto tape.  
This method generally means that backups are usually quicker than the "file by 
file" method.  However restoration of individual files generally takes much 
more time.   

Transport programs that use the method include dd, volcopy and dump. 

File by file 

Commands performing backups using this method use the system calls 
provided by the operating system to read the information.  Since almost any 
UNIX system uses the same system calls, a transport program that uses the file 
by file method (and the data it saves) is more portable. 

File by file backups generally take more time but it is generally easier to 
restore individual files.  Commands that use this method include tar and 
cpio. 

Backing up FAT and EXT2 file systems 

If you are like most people using this text then chances are that your Linux 
computer contains both FAT and EXT2 file systems.  The FAT file systems 
will be used by the version of Windows you were originally running while the 
EXT2 file systems will be those used by Linux. 

Of course being the trainee computing professional you are backups of your 
personal computer are performed regularly.  It would probably be useful to you 
to be able to backup both the FAT and EXT2 file systems at the same time, 
without having to switch operating systems. 



85321, Systems Administration Chapter 11: Backups 

David Jones  (20.01.00)  Page 304 

Well doing this from Windows isn’t going to work.  Windows still doesn’t read 
the EXT2 file system.  So you will have to do it from Linux.  Which type of 
transport do you use for this, image or file by file? 

Well here’s a little excerpt from the man page for the dump command, the one 
of the  image transports available on Linux. 

It might be considered a bug that this version of dump can only 
handle ext2 filesystems.  Specifically, it does not work with FAT 
filesystems. 

If you think about it this shortcoming is kind of obvious.   

The dump command does not use the kernel file system code.  It is an image 
transport.    This means it must know everything about the filesystem it is 
going to backup.  How are directories structured, how are the data blocks for 
files store on the system, how is file metadata (e.g. permissions, file owners 
etc) stored and many more questions.   

The people who wrote dump included this information into the command. 

They didn’t include any information about the FAT file system.  So dump can’t 
backup FAT file systems. 

File by file transports on the other hand can quite happily backup any file 
system which you can mount on a Linux machine.  In this situation the virtual 
file system takes care of all the differences and all the file-by-file transport 
knows about are what appear to be normal Linux files. 

Media 

Backups are usually made to tape based media.  There are different types of 
tape.  Tape media can differ in 

• physical size and shape, and 

• amount of information that can be stored. 
From 100Mb up to 8Gb. 

Different types of media can also be more reliable and efficient.  The most 
common type of backup media used today are 4 millimetre DAT tapes. 

Reading 

Under the Resource Materials section for Week 6 on the 85321 Web 
site/CD-ROM you will find a pointer to the USAIL resources on backups.  
This includes a pointer to discussion about the different type of media 
which are available. 

Commands 
As with most things, the different versions of UNIX provide a plethora of 
commands that could possibly act as the transport in a backup system.  The 
following table provides a summary of the characteristics of the more common 
programs that are used for this purpose. 



85321, Systems Administration Chapter 11: Backups 

David Jones  (20.01.00)  Page 305 

Command 

 

Availability Characteristics 

dump/restore  BSD systems image backup, allows multiple volumes, not 
included on most AT&T systems 

tar almost all 
systems 

file by file, most versions do not support 
multiple volumes, intolerant of errors 

cpio AT&T systems file by file, can support multiple volumes 
some versions don’t,  

T a b l e  1 1 . 1 .  
T h e  D i f f e r e n t  B a c k u p  C o m m a n d s .  

There are a number of other public domain and commercial backup utilities 
available which are not listed here. 

dump and restore 

A favourite amongst many Systems Administrators, dump is used to perform 
backups and restore is used to retrieve information from the backups. 

These programs are of BSD UNIX origin and have not made the jump across 
to SysV systems.  Most SysV systems do not come with dump and restore.  
The main reason is that since dump and restore bypass the file system, they 
must know how the particular file system is structured.  So you simply can’t 
recompile a version of dump from one machine onto another (unless they use 
the same file system structure). 

Many recent versions of systems based on SVR4 (the latest version of System 
V UNIX) come with versions of dump and restore. 

dump on Linux 

There is a version of dump for Linux.  However, it may be possible that you 
do not have it installed on your system.  RedHat Linux does include an RPM 
package which contains dump.  If your system doesn’t have dump and 
restore installed you should install it now.  RedHat provides a couple of 
tools to installe these packages: rpm and glint.  glint is the GUI tool for 
managing packages.  Refer to the RedHat documentation for more details on 
using these tools. 

dump 

The command line format for dump is 

dump [ options [ arguments ] ] file system 

dump [ options [ arguments ] ] filename 

Arguments must appear after all options and must appear in a set order. 

dump is generally used to backup an entire partition (file system).  If given a 
list of filenames, dump will backup the individual files. 



85321, Systems Administration Chapter 11: Backups 

David Jones  (20.01.00)  Page 306 

dump works on the concept of levels (it uses 9 levels).  A dump level of 0 
means that all files will be backed up.  A dump level of 1...9 means that all 
files that have changed since the last dump of a lower level will be backed up.  
Table 11.2 shows the arguments for dump. 

Options 

 

Purpose 

0-9 dump level 

a archive-file archive-file will be a table of contents of the 
archive. 

f dump-file specify the file (usually a device file) to write the 
dump to, a – specifies standard output 

u update the dump record (/etc/dumpdates) 

v after writing each volume, rewind the tape and 
verify.  The file system must not be used during 
dump or the verification. 

T a b l e  1 1 . 2 .  
A r g u m e n t s  f o r  d u m p  

There are other options.  Refer to the man page for the system for more 
information.   

For example: 
dump 0dsbfu 54000 6000 126 /dev/rst2 /usr 

full backup of /usr file system on a 2.3 Gig 8mm tape connected to device 
rst2  The numbers here are special information about the tape drive the 
backup is being written on. 

The restore command 

The purpose of the restore command is to extract files archived using the 
dump command.  restore provides the ability to extract single individual 
files, directories and their contents and even an entire file system. 

restore -irRtx [ modifiers ] [ filenames ] 

The restore command has an interactive mode where commands like ls 
etc can be used to search through the backup. 



85321, Systems Administration Chapter 11: Backups 

David Jones  (20.01.00)  Page 307 

 

Arguments 

 

Purpose 

i interactive, directory information is read from the tape after 
which you can browse through the directory hierarchy and select 
files to be extracted. 

r restore the entire tape.  Should only be used to restore an entire 
file system or to restore an incremental tape after a full level 0 
restore. 

t table of contents, if no filename provided, root directory is listed 
including all subdirectories (unless the h modifier is in effect) 

x extract named files.  If a directory is specified, it and all its sub-
directories are extracted. 

T a b l e  1 1 . 3 .  
A r g u m e n t s  f o r  t h e  r e s t o r e  C o m m a n d .  

 

Modifiers Purpose 

a archive-file  use an archive file to search for a file’s 
location.  Convert contents of the dump 
tape to the new file system format 

d turn on debugging 

h prevent hierarchical restoration of sub-
directories 

v verbose mode 

f dump-file specify dump-file to use, - refers to 
standard input 

s n skip to the nth dump file on the tape 

T a b l e  1 1 . 4 .  
A r g u m e n t  m o d i f i e r s  f o r  t h e  r e s t o r e  C o m m a n d .  

Using dump and restore  without a tape 

Not many of you will have tape drives or similar backup media connected to 
your Linux machine.  However, it is important that you experiment with the 
dump and restore commands to gain an understanding of how they work.  
This section offers a little kludge which will allow you to use these commands 
without a tape drive.  The method relies on the fact that UNIX accesses 
devices through files. 

Our practice file system 

For all our experimentation with the commands in this chapter we are going to 
work with a practice file system.  Practising backups with hard-drive partitions 



85321, Systems Administration Chapter 11: Backups 

David Jones  (20.01.00)  Page 308 

is not going to be all that efficient as they will almost certainly be very large.  
Instead we are going to work with a floppy drive. 

The first step then is to format a floppy with the ext2 file system.  By now 
you should know how to do this.  Here’s what I did to format a floppy and put 
some material on it. 

[root@beldin]# /sbin/mke2fs /dev/fd0 
mke2fs 1.10, 24-Apr-97 for EXT2 FS 0.5b, 95/08/09 
Linux ext2 filesystem format 
Filesystem label= 
360 inodes, 1440 blocks 
72 blocks (5.00%) reserved for the super user 
First data block=1 
Block size=1024 (log=0) 
Fragment size=1024 (log=0) 
1 block group 
8192 blocks per group, 8192 fragments per group 
360 inodes per group 
 
Writing inode tables: done 
Writing superblocks and filesystem accounting information: done 
[root@beldin]# mount -t ext2 /dev/fd0 /mnt/floppy 
[root@beldin]# cp /etc/passwd /etc/issue /etc/group /var/log/messages 
/mnt/floppy 
[root@beldin dump-0.3]# 

Doing a level 0 dump 

So I’ve copied some important stuff to this disk.  Let’s assume I want to do a 
level 0 dump of the /mnt/floppy file system.  How do I do it? 

[root@beldin]# /sbin/dump 0f /tmp/backup /mnt/floppy 
  DUMP: Date of this level 0 dump: Sun Jan 25 15:05:11 1998 
  DUMP: Date of last level 0 dump: the epoch 
  DUMP: Dumping /dev/fd0 (/mnt/floppy) to /tmp/backup 
  DUMP: mapping (Pass I) [regular files] 
  DUMP: mapping (Pass II) [directories] 
  DUMP: estimated 42 tape blocks on 0.00 tape(s). 
  DUMP: dumping (Pass III) [directories] 
  DUMP: dumping (Pass IV) [regular files] 
  DUMP: DUMP: 29 tape blocks on 1 volumes(s) 
  DUMP: Closing /tmp/backup 
  DUMP: DUMP IS DONE 

The arguments to the dump command are 

• 0 
This tells dump I wish to perform a level 0 dump of the file system. 

• f 
This is telling dump that I will tell it the name of the file that it should 
write the backup to. 

• /tmp/backup 
This is the name of the file I want the backup to go to.  Normally, this 
would be the device file for a tape drive or other backup device.  However, 
since I don’t have one I’m telling it a normal file. 

• /mnt/floppy 
This is the file system I want to backup. 



85321, Systems Administration Chapter 11: Backups 

David Jones  (20.01.00)  Page 309 

What this means is that I have now created a file, /tmp/backup, which 
contains a level 0 dump of the floppy. 

[root@beldin]# ls -l /tmp/backup 
-rw-rw-r--   1 root     tty         20480 Jan 25 15:05 /tmp/backup 

Restoring the backup 

Now that we have a dump archive to work with, we can try using the 
restore command to retrieve files. 

[roo t@beldin dump-0.3]# /sbin/restore -if /tmp/backup 
restore > ? 
Available commands are: 
        ls [arg] - list directory 
        cd arg - change directory 
        pwd - print current directory 
        add [arg] - add ‘arg’ to list of files to be extracted 
        delete [arg] - delete ‘arg’ from list of files to be extracted 
        extract - extract requested files 
        setmodes - set modes of requested directories 
        quit - immediately exit program 
        what - list dump header information 
        verbose - toggle verbose flag (useful with ‘‘ls’’) 
        help or ‘?’ - print this list 
If no ‘arg’ is supplied, the current directory is used 
restore > ls 
.: 
group       issue       lost+found/ messages    passwd 
 
restore > add passwd 
restore > extract 
You have not read any tapes yet. 
Unless you know which volume your file(s) are on you should start 
with the last volume and work towards towards the first. 
 Specify next volume #: 1 
Mount tape volume 1 
Enter ‘‘none’’ if there are no more tapes 
otherwise enter tape name (default: /tmp/backup) 
set owner/mode for ’.’? [yn] y 
restore > quit 
[root@beldin]# ls -l passwd 
-rw-r--r--   1 root     root          787 Jan 25 15:00 passwd 

Alternative 

Rather than backup to a normal file on the hard-drive you could choose to 
backup files directly to a floppy drive (i.e. use /dev/fd0 rather than 
/tmp/backup).  One problem with this alternative is that you are limited to 
1.44Mb per media.  This used to be a problem because the Linux version of 
dump did not support multiple volumes.  It appears it know does. 

Exercises 

11.1. Do a level 0 dump of a portion of your home directory onto a file 
somewhere on your hard drive.  Examine the file /etc/dumpdates.  
How has it changed? 

11.2. Use restore to retrieve some individual files from the backup and 
also to retrieve the entire backup. 



85321, Systems Administration Chapter 11: Backups 

David Jones  (20.01.00)  Page 310 

11.3. Perform a dump onto floppies which requires more than 1.44Mb of 
space (the idea here is to play around with multiple volume backups).  
You can do this by creating a directory and placing files into it until you 
have more than 1.44Mb of data in it (use the du command to find out 
how much space is being consumed).  After you’ve backed up onto 
floppies try retrieving some files.  What problems do you face? 

The tar command 

tar is a general purpose command used for archiving files.  It takes multiple 
files and directories and combines them into one large file.  By default the 
resulting file is written to a default device (usually a tape drive).  However the 
resulting file can be placed onto a disk drive. 

tar -function[modifier] device [files] 

The purpose and values for function and modifier are shown in Tables 
11.5 through 11.7. 

When using tar, each individual file stored in the final archive is preceded by 
a header that contains approximately 512 bytes of information.  Also the end of 
the file is always padded so that it occurs on an even block boundary.  For this 
reason, every file added into the tape archive has on average an extra .75Kb 
of padding per file.   

 

Arguments Purpose 

function A single letter specifying what should be done, values listed in 
Table 11.6 

modifier Letters that modify the action of the specified function, values 
listed in Table 11.7 

files The names of the files and directories to be restored or archived.  
If it is a directory then EVERYTHING in that directory  is  
restored  or archived 

T a b l e  1 1 . 5 .  
A r g u m e n t s  t o  t a r .  



85321, Systems Administration Chapter 11: Backups 

David Jones  (20.01.00)  Page 311 

 

Function Purpose 

c create a new tape, do not write after last file  

r replace, the named files are written onto the end of the tape 

t table, information about specified files is listed, similar in 
output to the command ls -l, if no files specified all files listed 

u * update, named files are added to the tape if they are not already 
there or they have been modified since being previously written 

x extract, named files restored from the tape, if the named file 
matches a directory all the contents are extracted recursively 

*  the u function can be very slow 
T a b l e  1 1 . 6 .  

V a l u e s  o f  t h e  f u n c t i o n  a r g u m e n t  f o r  t a r .  

 

Modifier Purpose 

v verbose, tar reports what it is doing and to what 

w tar prints the action to be taken, the name of the file 
and waits for user confirmation 

f file, causes the device parameter to be treated as a file 

m modify, tells tar not to restore the modification times as 
they were archived but instead to use the time of 
extraction 

o ownership, use the UID and GID of the user running 
tar not those stored on the tape 

T a b l e  1 1 . 7 .  
V a l u e s  o f  t h e  m o d i f i e r  a r g u m e n t  f o r  t a r .  

If the f modifier is used it must be the last modifier used.  Also tar is an 
example of a UNIX command where the - character is not required to specify 
modifiers. 

For example: 

tar -xvf temp.tar   tar xvf temp.tar 

extracts all the contents of the tar file temp.tar 

tar -xf temp.tar hello.dat   

extracts the file hello.dat from the tar file temp.tar 

 tar -cv /dev/rmt0 /home 

archives all the contents of the /home directory onto tape, overwriting 
whatever is there 



85321, Systems Administration Chapter 11: Backups 

David Jones  (20.01.00)  Page 312 

Exercises 

11.4. Create a file called temp.dat under a directory tmp that is within 
your home directory.  Use tar to create an archive containing the 
contents of your home directory. 

11.5. Delete the $HOME/tmp/temp.dat created in the previous question.  
Extract the copy of the file that is stored in the tape archive (the term 
tape archive is used to refer to a file created by tar) created in the 
previous question. 

The dd command 

The man page for dd lists its purpose as being "copy and convert 
data".  Basically dd takes input from one source and sends it to a different 
destination.  The source and destination can be device files for disk and tape 
drives, or normal files. 

The basic format of dd is 

dd [ option = value ....] 

Table 11.8. lists some of the different options available. 

 

Option Purpose 

if=name input file name (default is standard input) 

of=name output file name (default is standard output) 

ibs=num the input block size in num bytes (default is 512) 

obs=num the output block size in num bytes (default is 512) 

bs=num set both input and output block size 

skip=num skip num input records before starting to copy 

files=num copy num files before stopping (used when input is 
from magnetic tape) 

conv=ascii convert EBCDIC to ASCII 

conv=ebcdic convert ASCII to EBCDIC 

conv=lcase make all letters lowercase 

conv=ucase make all letters uppercase 

conv=swab swap every pair of bytes 

T a b l e  1 1 . 8 .  
O p t i o n s  f o r  d d .  



85321, Systems Administration Chapter 11: Backups 

David Jones  (20.01.00)  Page 313 

For example: 

dd if=/dev/hda1 of=/dev/rmt4 

with all the default settings copy the contents of hda1 (the first partition on 
the first disk) to the tape drive for the system 

Exercises 

11.6. Use dd to copy the contents of a floppy disk to a single file to be stored 
under your home directory.  Then copy it to another disk. 

The mt command 

The usual media used in backups is magnetic tape.  Magnetic tape is a 
sequential media.  That means that to access a particular file you must pass 
over all the tape containing files that come before the file you want.  The mt 
command is used to send commands to a magnetic tape drive that control the 
location of the read/write head of the drive. 

mt [-f tapename] command [count] 

Arguments Purpose 

tapename raw device name of the tape device 

command one of the commands specified in table 
11.10.  Not all commands are recognised 
by all tape drives. 

count number of times to carry out command 

T a b l e  1 1 . 9 .  
P a r a m e t e r s  f o r  t h e  m t  C o m m a n d .  

 

Commands Action 

fsf move forward the number of files specified by 
the count argument 

asf move forward to file number count 

rewind rewind the tape 

retension wind the tape out to the end and then rewind 

erase erase the entire tape 

offline eject the tape 

T a b l e  1 1 . 1 0 .  
C o m m a n d s  P o s s i b l e  u s i n g  t h e  m t  C o m m a n d .  

For example: 

mt -f /dev/nrst0 asf 3 

moves to the third file on the tape 



85321, Systems Administration Chapter 11: Backups 

David Jones  (20.01.00)  Page 314 

mt -f /dev/nrst0 rewind 
mt -f /dev/nrst0 fsf 3 

same as the first command 

The mt command can be used to put multiple dump/tar archive files onto 
the one tape.  Each time dump/tar is used, one file is written to the tape.  
The mt command can be used to move the read/write head of the tape drive to 
the end of that file, at which time dump/tar can be used to add another file. 

For example: 

mt -f /dev/rmt/4 rewind 

rewinds the tape drive to the start of the tape 

tar -cvf /dev/rmt/4 /home/jonesd 

backs up my home directory, after this command the tape will be automatically 
rewound 

mt -f /dev/rmt/4 asf 1 

moves the read/write head forward to the end of the first file 

tar -cvf /dev/rmt/4a /home/thorleym 

backs up the home directory of thorleym onto the end of the tape drive 

There are now two tar files on the tape, the first containing all the files and 
directories from the directory /home/jonesd and the second containing all 
the files and directories from the directory /home/thorleym. 

Compression programs 

Compression programs are sometimes used in conjunction with transport 
programs to reduce the size of backups.  This is not always a good idea.  
Adding compression to a backup adds extra complexity to the backup and as 
such increases the chances of something going wrong. 

compress 

compress is the standard UNIX compression program and is found on every 
UNIX machine (well, I don’t know of one that doesn’t have it).  The basic 
format of the compress command is 

compress filename 

The file with the name filename will be replaced with a file with the same 
name but with an extension of .Z added, and that is smaller than the original 
(it has been compressed). 

A compressed file is uncompressed using the uncompress command or the 
-d switch of compress.  

uncompress filename   or   compress -d filename 



85321, Systems Administration Chapter 11: Backups 

David Jones  (20.01.00)  Page 315 

For example: 

bash$ ls -l ext349*  
-rw-r----- 1 jonesd      17340 Jul 16 14:28 ext349 
bash$ compress ext349 
bash$ ls -l ext349* 
-rw-r----- 1 jonesd       5572 Jul 16 14:28 ext349.Z  
bash$ uncompress ext349 
bash$ ls -l ext349* 
-rw-r----- 1 jonesd      17340 Jul 16 14:28 ext349 

gzip 

gzip is a new addition to the UNIX compression family.  It works in basically 
the same way as compress but uses a different (and better) compression 
algorithm.  It uses an extension of .z and the program to uncompress a gzip 
archive is gunzip. 

For example: 

bash$ gzip ext349  
bash$ ls -l ext349*  
-rw-r----- 1 jonesd    4029 Jul 16 14:28 ext349.z 
bash$ gunzip ext349 

Exercises 

11.7. Modify your solution to exercise 11.5 so that instead of writing the 
contents of your floppy straight to a file on your hard disk it first 
compresses the file using either compress or gzip and then saves to 
a file. 

Conclusions 
In this chapter you have  

• been introduced to the components of a backup strategy scheduler, 
transport, and media 

• been shown some of the UNIX commands that can be used as the transport 
in a backup strategy 

• examined some of the characteristics of a good backup strategy and some 
of the factors that affect a backup strategy 

Review questions 
11.1.  

Design a backup strategy for your system.  List the components of your backup 
strategy and explain how these components affect your backup strategy.   

 



85321, Systems Administration Chapter 11: Backups 

David Jones  (20.01.00)  Page 316 

11.2.  

Explain the terms media, scheduler and transport. 

 

11.3.  

Outline the difference between file by file and image transport programs. 

11.4. 

ACME Backup Systems has just produced a wonderful backup system which 
has caught the eye of your manager.  He has decided that it is the product you 
should be using to backup the Linux servers within your organization.  
ACME’s “Backup-true” product is an image transport developed for the 
Windows NT file system.  Why can’t you use it for to backup your Linux 
systems? 

 



85321, Systems Administration Chapter 12:  Startup and Shutdown 

David Jones (20.01.00) Page 317 

Chapter 
Startup and Shutdown 

Introduction  
Being a multi-tasking, multi-user operating system means that UNIX is a great 
deal more complex than an operating system like MS-DOS. Before the UNIX 
operating system can perform correctly, there are a number of steps that must 
be followed, and procedures executed. The failure of any one of these can 
mean that the system will not start, or if it does it will not work correctly. It is 
important for the Systems Administrator to be aware of what happens during 
system startup so that any problems that occur can be remedied. 

It is also important for the Systems Administrator to understand what the 
correct mechanism is to shut a UNIX machine down. A UNIX machine should 
(almost) never be just turned off. There are a number of steps to carry out to 
ensure that the operating system and many of its support functions remain in a 
consistent state. 

By the end of this chapter you should be familiar with the startup and 
shutdown procedures for a UNIX machine and all the related concepts.  

Other  Resources 
There is a lot of available information about the startup process of a Linux 
machine and also how you recover from errors in the startup process.  These 
include 

• HOW-TOs 
BootPrompt HOW-TO, Boot disk HOW-TO, UPS HOW-TO, LILO Mini 
HOW-TO, Win95 + WinNT + Linux multiboot using LILO mini-HOWTO 

• Rescue disk sets 

• The Linux Systems Administrator’s Guide (part of the LDP and on the 
85321 CD-ROM) chapter (chapter 6) on boots and shutdowns and also 
Chapter 7 on init. 

A booting overview  
The process by which a computer is turned on and the UNIX operating system 
starts functioning – booting - consists of the following steps  

• finding the kernel, 
The first step is to find the kernel of the operating system.  How this is 
achieved is usually particular to the type of hardware used by the computer.  



85321, Systems Administration Chapter 12:  Startup and Shutdown 

David Jones (20.01.00) Page 318 

• starting the kernel, 
In this step the kernel starts operation and in particular goes looking for all 
the hardware devices that are connected to the machine. 

• starting the processes. 
All the work performed by a UNIX computer is done by processes.  In this 
stage, most of the system processes and daemons are started.  This step also 
includes a number of steps which configure various services necessary for 
the system to work. 

Finding the Kernel 
For a UNIX computer to be functional it must have a kernel.  The kernel 
provides a number of essential services which are required by the rest of the 
system in order for it to be functional.  This means that the first step in the 
booting process of a UNIX computer is finding out where the kernel is.  Once 
found, it can be started, but that’s the next section. 

ROM  

Most machines have a section of read only memory (ROM) that contains a 
program the machine executes when the power first comes on. What is 
programmed into ROM will depend on the hardware platform. 

For example, on an IBM PC, the ROM program typically does some hardware 
probing and then looks in a number of predefined locations (the first floppy 
drive and the primary hard drive partition) for a bootstrap program. 

On hardware designed specifically for the UNIX operating system (machines 
from DEC, SUN etc), the ROM program will be a little more complex. Many 
will present some form of prompt. Generally this prompt will accept a number 
of commands that allow the Systems Administrator to specify 

• where to boot the machine from, and 
Sometimes the standard root partition will be corrupt and the system will 
have to be booted from another device. Examples include another hard 
drive, a CD-ROM, floppy disk or even a tape drive.  

• whether to come up in single user or multi-user mode. 

As a bare minimum, the ROM program must be smart enough to work out 
where the bootstrap program is stored and how to start executing it.  

The ROM program generally doesn’t know enough to know where the kernel is 
or what to do with it. 

The bootstrap program  

At some stage the ROM program will execute the code stored in the boot block 
of a device (typically a hard disk drive). The code stored in the boot block is 
referred to as a bootstrap program.  Typically the boot block isn’t big enough to 
hold the kernel of an operating system so this intermediate stage is necessary. 

The bootstrap program is responsible for locating and loading (starting) the 
kernel of the UNIX operating system into memory. The kernel of a UNIX 



85321, Systems Administration Chapter 12:  Startup and Shutdown 

David Jones (20.01.00) Page 319 

operating system is usually stored in the root directory of the root file system 
under some system-defined filename. Newer versions of Linux, including 
RedHat 5.0 and above, put the kernel into a directory called /boot.  /boot is 
often on a separate partition.  In fact the default installation of RedHat Linux 
will create /boot as a separate partition. 

The most common bootstrap program in the Linux world is a program called 
LILO. 

 

Reading 

LILO is such an important program to the Linux operating system that it has 
its own HOW-TO.  The HOW-TO provides a great deal of information 
about the boot process of a Linux computer.   

Booting on a PC  
The BIOS on a PC generally looks for a bootstrap program in one of two 
places (usually in this order)  

• the first (A: ) floppy drive, or  

• the first (C: ) hard drive.  

By playing with your BIOS settings you can change this order or even prevent 
the BIOS from checking one or the other.  

The BIOS loads the program that is on the first sector of the chosen drive and 
loads it into memory. This bootstrap program then takes over.   For example, 
making sure people can’t boot your Linux machine of a floppy can prevent 
them from gaining access to the data on your machine. 

On the floppy  

On a bootable floppy disk the bootstrap program simply knows to load the first 
blocks on the floppy that contain the kernel into a specific location in memory.  

A normal Linux boot floppy contains no file system. It simply contains the 
kernel copied into the first sectors of the disk. The first sector on the disk 
contains the first part of the kernel which knows how to load the remainder of 
the kernel into RAM. 

This means you can’t mount the boot floppy onto your Linux machine and read 
the contents of the disk using ls and other associated commands. 

Making a boot disk  

The simplest method for creating a floppy disk which will enable you to boot a 
Linux computer is  

• insert a floppy disk into a computer already running Linux  

• login as root   

• change into the /boot directory  



85321, Systems Administration Chapter 12:  Startup and Shutdown 

David Jones (20.01.00) Page 320 

• copy the current kernel onto the floppy 
dd if=vmlinuz of=/dev/fd0   
The name of the kernel, vmlinuz, may change from system to system.  
For example, on some version 5.0 of RedHat Linux it will have been 
vmlinux-2.0.31. 

Exercises 

12.1. Using the above steps create a boot floppy for your machine and test it 
out.  

Using a boot loader 

Having a boot floppy for your system is a good idea.  It can come in handy if 
you do something to your system which prevents the normal boot procedure 
from working.  One example of this is when you are compiling a new kernel.  
It is not unheard of for people to create a kernel which will not boot their 
system.  If you don’t have an alternative boot method in this situation then you 
will have some troubles. 

However, you can’t use this process to boot from a hard-drive.  Instead a boot 
loader or boot strap program, such as LILO, is used.  A boot loader generally 
examines the partition table of the hard-drive, identifies the active partition, 
and then reads and starts the code in the boot sector for that partition. This is a 
simplification. In reality the boot loader must identify, somehow, the sectors in 
which the kernel resides.  

Other features a boot loader (under Linux) offers include  

• using a key press to bring up a prompt to modify the boot procedure, and  

• the passing of parameters to the kernel to modify its operation  

Exercises 

12.2. If you have the time, haven’t done so already, or know it is destined to 
failure read the LILO documentation and install LILO onto your system.  
There are some situations where you SHOULD NOT install LILO.  
These are outlined in the documentation.  Make sure you take notice of 
these situations. 

Star ting the kernel  
Okay, the boot strap program or the ROM program has found your system’s 
kernel.  What happens during the startup process?  The kernel will go through 
the following process  

• initialise its internal data structures, 
Things like ready queues, process control blocks and other data structures 
need to be readied. 

• check for the hardware connected to your system,  
It is important  that you are aware that the kernel will only look for 



85321, Systems Administration Chapter 12:  Startup and Shutdown 

David Jones (20.01.00) Page 321 

hardware that it contains code for.  If your system has a SCSI disk drive 
interface your kernel must have the SCSI interface code before it will be 
able to use it. 

• verify the integrity of the root file system and then mount it, and 

• create the process 0 (swapper ) and process 1 (init ).  

The swapper  process is actually part of the kernel and is not a "real" process. 
The init  process is the ultimate parent of all processes that will execute on a 
UNIX system.  

Once the kernel has initialised itself, init will perform the remainder of the 
startup procedure.  

Kernel boot messages  

When a UNIX kernel is booting, it will display messages on the main console 
about what it is doing. Under Linux, these messages are also sent to the file  
/var/log/dmesg . The following is a copy of the boot messages on my 
machine. 

Examine the messages that your kernel displays during bootup and compare 
them with mine.  

Linux version 2.2.12-20 (root@porky.devel.redhat.com) (gcc version egcs-2.91.66 
19990314/Linux (egcs-1.1.2 release)) #1 Mon Sep 27 10:25:54 EDT 1999 
Detected 233867806 Hz processor. 
Console: colour VGA+ 80x25 
Calibrating delay loop... 466.94 BogoMIPS 
Memory: 127668k/131072k available (1008k kernel code, 412k reserved, 1640k data, 64k 
init) 
DENTRY hash table entries: 262144 (order: 9, 2097152 bytes) 
Buffer-cache hash table entries: 131072 (order: 7, 524288 bytes) 
Page-cache hash table entries: 32768 (order: 5, 131072 bytes) 
VFS: Diskquotas version dquot_6.4.0 initialized 
CPU: Intel Mobile Pentium MMX stepping 01 
Checking 386/387 coupling... OK, FPU using exception 16 error reporting. 
Checking ’hlt’ instruction... OK. 
Intel Pentium with F0 0F bug - workaround enabled. 
POSIX conformance testing by UNIFIX 
PCI: PCI BIOS revision 2.10 entry at 0xf56ee 
PCI: Using configuration type 1 
PCI: Probing PCI hardware 
PCI: Enabling I/O for device 00:0a 
Linux NET4.0 for Linux 2.2 
Based upon Swansea University Computer Society NET3.039 
NET4: Unix domain sockets 1.0 for Linux NET4.0. 
NET4: Linux TCP/IP 1.0 for NET4.0 
IP Protocols: ICMP, UDP, TCP, IGMP 
TCP: Hash tables configured (ehash 131072 bhash 65536) 
Initializing RT netlink socket 
Starting kswapd v 1.5  
Detected PS/2 Mouse Port. 
Serial driver version 4.27 with MANY_PORTS MULTIPORT SHARE_IRQ enabled 
ttyS00 at 0x03f8 (irq = 4) is a 16550A 
pty: 256 Unix98 ptys configured 
apm: BIOS version 1.2 Flags 0x03 (Driver version 1.9) 
Real Time Clock Driver v1.09 
RAM disk driver initialized:  16 RAM disks of 4096K size 
PIIX4: IDE controller on PCI bus 00 dev 09 
PIIX4: not 100% native mode: will probe irqs later 
    ide0: BM-DMA at 0xfcd0-0xfcd7, BIOS settings: hda:pio, hdb:pio 
    ide1: BM-DMA at 0xfcd8-0xfcdf, BIOS settings: hdc:pio, hdd:pio 
hda: IBM-DCXA-210000, ATA DISK drive 
hdc: TOSHIBA CD-ROM XM-1602B, ATAPI CDROM drive 
ide0 at 0x1f0-0x1f7,0x3f6 on irq 14 
ide1 at 0x170-0x177,0x376 on irq 15 
hda: IBM-DCXA-210000, 9590MB w/420kB Cache, CHS=1222/255/63 



85321, Systems Administration Chapter 12:  Startup and Shutdown 

David Jones (20.01.00) Page 322 

hdc: ATAPI 20X CD-ROM drive, 128kB Cache 
Uniform CDROM driver Revision: 2.56 
Floppy drive(s): fd0 is 1.44M 
FDC 0 is a National Semiconductor PC87306 
md driver 0.90.0 MAX_MD_DEVS=256, MAX_REAL=12 
raid5: measuring checksumming speed 
raid5: MMX detected, trying high-speed MMX checksum routines 
   pII_mmx   :   340.614 MB/sec 
   p5_mmx    :   405.003 MB/sec 
   8regs     :   246.888 MB/sec 
   32regs    :   184.785 MB/sec 
using fastest function: p5_mmx (405.003 MB/sec) 
scsi : 0 hosts. 
scsi : detected total. 
md.c: sizeof(mdp_super_t) = 4096 
Partition check: 
 hda: hda1 hda2 < hda5 hda6 > 
RAMDISK: Compressed image found at block 0 
autodetecting RAID arrays 
autorun ... 
... autorun DONE. 
VFS: Mounted root (ext2 filesystem). 
autodetecting RAID arrays 
autorun ... 
... autorun DONE. 
VFS: Mounted root (ext2 filesystem) readonly. 
change_root: old root has d_count=1 
Trying to unmount old root ... okay 
Freeing unused kernel memory: 64k freed 
Adding Swap: 72252k swap-space (priority -1) 
ad1848/cs4248 codec driver Copyright (C) by Hannu Savolainen 1993-1996 
[MSS: IRQ Conflict?] 
ad1848: Interrupt test failed (IRQ7) 
YM3812 and OPL-3 driver Copyright (C) by Hannu Savolainen, Rob Hooft 1993-1996 

The last few lines of this output demonstrates one of the advantages of 
checking the kernel boot messages.  I’ve just discovered that the sound 
configuration for my system is not working as expected.  Something I need to 
investigate and fix. 

Star ting the processes 
So at this stage the kernel has been loaded, it has initialised its data structures 
and found all the hardware devices.  At this stage your system can’t do 
anything.  The operating system kernel only supplies services which are used 
by processes.  The question is how are these other processes created and 
executed. 

On a UNIX system the only way in which a process can be created is by an 
existing process performing a fork operation. A fork creates a brand new 
process that contains copies of the code and data structures of the original 
process. In most cases the new process will then perform an exec that 
replaces the old code and data structures with that of a new program.  

But who starts the first process? 

init  is the process that is the ultimate ancestor of all user processes on a 
UNIX system. It always has a Process ID (PID) of 1. init is started by the 
operating system kernel so it is the only process that doesn’t have a process as 
a parent. init is responsible for starting all other services provided by the 
UNIX system.  The services it starts are specified by init’s configuration file, 
/etc/inittab. 



85321, Systems Administration Chapter 12:  Startup and Shutdown 

David Jones (20.01.00) Page 323 

Run levels  

init is also responsible for placing the computer into one of a number of run 
levels.  The run level a computer is in controls what services are started (or 
stopped) by init.  Table 12.2 summarises the different run levels used by 
RedHat Linux.  At any one time, the system must be in one of these run levels.  
 

Run level Description 

0 Halt the machine  

 1 Single user mode. All file systems 
mounted, only small set of kernel 
processes running.  Only root can login.  

2 multi-user mode , without remote file 
sharing 

3 multi-user mode with remote file sharing, 
processes, and daemons  

4 user definable system state  

5 used for to start X11 on boot 

6 shutdown and reboot  

a b c ondemand run levels 

s  or S same as single-user mode, only really used 
by scripts 

T a b l e  1 2 . 1  
R u n  l e v e l s   

When a Linux system boots, init examines the /etc/inittab  file for an 
entry of type initdefault . This entry will determine the initial run level of 
the system.  

Under Linux, the telinit  command is used to change the current run level. 
telinit  is actually a soft link to init . telinit  accepts a single character 
argument from the following  

• 0 1 2 3 4 5 6  
The run level is switched to this level.  

• Q q  
Tells init  that there has been a change to /etc/inittab  (its configuration 
file) and that it should re-examine it.  

• S s  
Tells init  to switch to single user mode.  



85321, Systems Administration Chapter 12:  Startup and Shutdown 

David Jones (20.01.00) Page 324 

/etc/inittab 

/etc/inittab  is the configuration file for init . It is a colon delimited field 
where # characters can be used to indicate comments. Each line corresponds to 
a single entry and is broken into four fields  

• the identifier 
One or two characters to uniquely identify the entry.  

• the run level 
Indicates the run level at which the process should be executed  

• the action 
Tells init  how to execute the process  

• the process 
The full path of the program or shell script to execute.  

What happens  

When init  is first started it determines the current run level (by matching the 
entry in /etc/inittab  with the action initdefault ) and then proceeds to 
execute all of the commands of entries that match the run level.  

The following is an example /etc/inittab taken from a RedHat machine 
with some comments added. 

Specify the default run level 
id:3:initdefault: 
 
# System initialisation. 
si::sysinit:/etc/rc.d/rc.sysinit 
 

when first entering various runlevels run the related startup scripts 
before going any further 
l0:0:wait:/etc/rc.d/rc 0 
l1:1:wait:/etc/rc.d/rc 1 
l2:2:wait:/etc/rc.d/rc 2 
l3:3:wait:/etc/rc.d/rc 3 
l4:4:wait:/etc/rc.d/rc 4 
l5:5:wait:/etc/rc.d/rc 5 
l6:6:wait:/etc/rc.d/rc 6 
 
# Things to run in every runlevel. 
ud::once:/sbin/update 
 

call the shutdown command to reboot the system when the use does the 
three fingered salute 
ca::ctrlaltdel:/sbin/shutdown -t3 -r now 
 

A powerfail signal will arrive if you have a uninterruptable power supply (UPS) 
if this happens shut the machine down safely 
pf::powerfail:/sbin/shutdown -f -h +2 "Power Failure; System Shutting Down" 
 
# If power was restored before the shutdown kicked in, cancel it. 
pr:12345:powerokwait:/sbin/shutdown -c "Power Restored; Shutdown Cancelled" 
 
 

Start the login process for the virtual consoles  
1:12345:respawn:/sbin/mingetty tty1 



85321, Systems Administration Chapter 12:  Startup and Shutdown 

David Jones (20.01.00) Page 325 

2:2345:respawn:/sbin/mingetty tty2 
3:2345:respawn:/sbin/mingetty tty3 
4:2345:respawn:/sbin/mingetty tty4 
5:2345:respawn:/sbin/mingetty tty5 
6:2345:respawn:/sbin/mingetty tty6 
 

If the machine goes into runlevel 5, start X 
x:5:respawn:/usr/bin/X11/xdm -nodaemon 

The identifier  

The identifier, the first field, is a unique two character identifier. For inittab 
entries that correspond to terminals the identifier will be the suffix for the 
terminals device file.  

For each terminal on the system a mingetty  process must be started by the 
init  process. Each terminal will generally have a device file with a name like 
/dev/tty??,  where the ?? will be replaced by a suffix. It is this suffix that 
must be the identifier in the /etc/inittab  file.  

Run levels  

The run levels describe at which run levels the specified action will be 
performed. The run level field of /etc/inittab  can contain multiple entries, 
e.g. 123, which means the action will be performed at each of those run levels.  

Actions  

The action’s field describes how the process will be executed. There are a 
number of pre-defined actions that must be used. Table 10.2 lists and explains 
them.  



85321, Systems Administration Chapter 12:  Startup and Shutdown 

David Jones (20.01.00) Page 326 

 

 

Action Purpose 

respawn   restart the process if it finishes  

wait   init will start the process once and wait until it has finished before 
going on to the next entry  

once   start the process once, when the runlevel is entered  

boot   perform the process during system boot (will ignore the runlevel 
field)  

bootwait   a combination of boot and wait   

off   do nothing  

initdefault   specify the default run level  

sysinit   execute process during boot and before any boot or bootwait  entries 

powerwait   executed when init  receives the SIGPWR signal which indicates a 
problem with the power, init  will wait until the process is 
completed  

ondemand execute whenever the ondemand runlevels are called (a b c).  When 
these runlevels are called there is NO change in runlevel. 

powerfail   same as powerwait but don’t wait (refer to the man page for the 
action powerokwait )  

ctrlaltdel   executed when init  receives SIGINT signal (usually when someone 
does CTRL-ALT-DEL  

T a b l e  1 2 . 2  
i n i t t a b  a c t i o n s   

The process  

The process is simply the name of the command or shell script that should be 
executed by init .  

Daemons and Configuration Files 

init is an example of a daemon.  It will only read its configuration file, 
/etc/inittab, when it starts execution.  Any changes you make to 
/etc/inittab will not influence the execution of init until the next time 
it starts, i.e. the next time your computer boots. 

There are ways in which you can tell a daemon to re-read its configuration 
files.  One generic method, which works most of the time, is to send the 
daemon the HUP signal.  For most daemons the first step in doing this is to find 
out what the process id (PID) is of the daemon.  This isn’t a problem for init. 
Why? 

It’s not a problem for init because init always has a PID of 1. 



85321, Systems Administration Chapter 12:  Startup and Shutdown 

David Jones (20.01.00) Page 327 

The more accepted method for telling init to re-read its configuration file is 
to use the telinit command.  telinit q will tell init to re-read its 
configuration file. 

Exercises 

12.3. Add an entry to the /etc/inittab  file so that it displays a message 
HELLO onto your current terminal (HINT: you can find out your current 
terminal using the tty command).  

12.4. Modify the inittab  entry from the previous question so that the 
message is displayed again and again and....  

12.5. Take your system into single user mode.  

12.6. Take your system into runlevel 5.  What happens?  (only do this if you 
have X Windows configured for your system).  Change your system so 
that it enters this run level when it boots.  Reboot your system and see 
what happens. 

12.7. The wall  command is used to display a message onto the terminals of 
all users. Modify the /etc/inittab  file so that whenever someone does 
the three finger salute (CTRL-ALT-DEL ) it displays a message on the 
consoles of all users and doesn’t log out.  

12.8. Examine your inittab  file for an entry with the identifier c1. This is 
the entry for the first console, the screen you are on when you first start 
your system.  
Change the entry for c1 so that the action field contains once instead of 
respawn . Force init  to re-read the inittab  file and then log in and log 
out on that console.  
What happens?  

System Configuration 
There are a number of tasks which must be completed once during system 
startup which must be completed once.  These tasks are usually related to 
configuring your system so that it will operate.  Most of these tasks are 
performed by the /etc/rc.d/rc.sysinit script. 

It is this script which performs the following operations 

• sets up a search path that will be used by the other scripts 

• obtains network configuration data 

• activates the swap partitions of your system 

• sets the hostname of your system 
Every UNIX computer has a hostname.  You can use the UNIX command 
hostname to set and also display your machine’s hostname. 

• sets the machines NIS domain (if you are using one) 

• performs a check on the file systems of your system 



85321, Systems Administration Chapter 12:  Startup and Shutdown 

David Jones (20.01.00) Page 328 

• turns on disk quotas (if being used) 

• sets up plug’n’play support 

• deletes old lock and tmp files 

• sets the system clock 

• loads any kernel modules. 

Terminal logins  
For a user to login there must be a getty process (RedHat Linux uses a 
program called mingetty, slightly different name but same task) running for 
the terminal they wish to use. It is one of init’s responsibilities to start the 
getty  processes for all terminals that are physically connected to the main 
machine, and you will find entries in the /etc/inittab  file for this.  

Please note this does not include connections over a network. They are 
handled with a different method. This method is used for the virtual consoles 
on your Linux machine and any other dumb terminals you might have 
connected via serial cables.   You should be able see the entries for the virtual 
consoles in the example /etc/inittab file from above. 

Exercises 

12.9. When you are in single user mode there is only one way to login to a 
Linux machine, from the first virtual console.  How is this done? 

Star tup scr ipts  
Most of the services which init starts are started when init executes the 
system start scripts.  The system startup scripts are shell scripts written using 
the Bourne shell (this is one of the reasons you need to know the bourne shell 
syntax).  You can see where these scripts are executed by looking at the 
inittab file. 

l0:0:wait:/etc/rc.d/rc 0 
l1:1:wait:/etc/rc.d/rc 1 
l2:2:wait:/etc/rc.d/rc 2 
l3:3:wait:/etc/rc.d/rc 3 
l4:4:wait:/etc/rc.d/rc 4 
l5:5:wait:/etc/rc.d/rc 5 
l6:6:wait:/etc/rc.d/rc 6 

These scripts start a number of services and also perform a number of 
configuration checks including 

• checking the integrity of the machine’s file systems using fsck,  

• mounting the file systems,  

• designating paging and swap areas,  

• checking disk quotas,  



85321, Systems Administration Chapter 12:  Startup and Shutdown 

David Jones (20.01.00) Page 329 

• clearing out temporary files in /tmp and other locations,  

• startin up system daemons for printing, mail, accounting, system logging, 
networking, cron and syslog . 

In the UNIX world there are two styles for startup files: BSD and System V.  
RedHat Linux uses the System V style and the following section concentrates 
on this format.  Table 12.3 summarises the files and directories which are 
associated with the RedHat  startup scripts.  All the files and directories in 
Table 12.3 are stored in the /etc/rc.d directory. 

Filename Purpose 

rc0.d rc1.d rc2.d 
rc3.d rc4.d rc5.d 
rc6.d 

directories which contain links to scripts which are executed 
when a particular runlevel is entered 

rc A shell script which is passed the run level. It then executes the 
scripts in the appropriate directory. 

init.d  Contains the actual scripts which are executed.  These scripts 
take either start or stop as a parameter 

rc.sysinit  run once at boot time to perform specific system initialisation 
steps 

rc.local   the last script run, used to do any tasks specific to your local 
setup that isn’t done in the normal SysV setup 

rc.serial   not always present, used to perform special configuration on any 
serial ports  

T a b l e  1 2 . 3  
L i n u x  s t a r t u p  s c r i p t s   

The Linux Process 

When init first enters a run level it will execute the script /etc/rc.d/rc 
(as shown in the example /etc/inittab above).  This script then proceeds 
to 

• determine the current and previous run levels 

• kill any services which must be killed 

• start all the services for the new run level. 

The /etc/rc.d/rc script knows how to kill and start the services for a 
particular run level because of the filenames in the directory for each runlevel.  
The following are the filenames from the /etc/rc.d/rc3.d directory on 
my system. 

[david@beldin rc.d]$ ls rc3.d 
K20rstatd   S05kudzu  S20random  S40crond   S75keytable  
S99linuxconf 
K20rusersd  S10network S25netfs   S45pcmcia  S80sendmail  S99local 
K20rwhod    S11portmap S30syslog  S50inet    S85gpm 
K55routed   S16apmd  S40atd     S60lpd     S90xfs 

You will notice that all the filenames in this, and all the other rcX.d 
directories, use the same format. 



85321, Systems Administration Chapter 12:  Startup and Shutdown 

David Jones (20.01.00) Page 330 

[SK]numberService 

Where number is some integer and Service is the name of a service. 

All the files with names starting with S are used to start a service.  Those 
starting with K are used to kill a service.  From the rc3.d directory above you 
can see scripts which start services for the Internet (S50inet), PCMCIA 
cards (S45pcmcia), a  and others. 

The numbers in the filenames are used to indicate the order in which these 
services should be started and killed.  You’ll notice that the script to start the 
Internet services comes before the script to start the Web server; obviously the 
Web server depends on the Internet services. 

/etc/rc.d/init.d 

If we look closer we can see that the files in the rcX.d directories aren’t really 
files. 

[david@beldin rc.d]$ ls -l rc3.d/S50inet 
lrwxrwxrwx   1 root   root  14 Dec 19 23:57 rc3.d/S50inet -> ../init.d/inet 

The files in the rcX.d directories are actually soft links to scripts in the 
/etc/rc.d/init.d directory.  It is these scripts which perform all the 
work. 

Starting and stopping 

The scripts in the /etc/rc.d/init.d directory are not only useful during 
the system startup process,  they can also be useful when you are performing 
maintenance on your system.  You can use these scripts to start and stop 
services while you are working on them. 

For example, lets assume you are changing the configuration of your Web 
server.  Once you’ve finished editing the configuration files you will need to 
restart the Web server for it to see the changes.  One way you could do this 
would be to follow this example 

[root@beldin rc.d]# /etc/rc.d/init.d/httpd stop  
Shutting down http: 
[root@beldin rc.d]# /etc/rc.d/init.d/httpd start  
Starting httpd: httpd 

This example also shows you how the scripts are used to start or stop a service.  
If you examine the code for /etc/rc.d/rc (remember this is the script 
which runs all the scripts in /etc/rc.d/rcX.d) you will see two lines.  
One with $i start and the other with $i stop.  These are the actual lines 
which execute the scripts. 

Lock files 

All of the scripts which start services during system startup create lock files.  
These lock files, if they exist, indicate that a particular service is operating.  
Their main use is to prevent startup files starting a service which is already 
running. 



85321, Systems Administration Chapter 12:  Startup and Shutdown 

David Jones (20.01.00) Page 331 

When you stop a service one of the things which has to occur is that the lock 
file must be deleted. 

Exercises 

12.10. What would happen if you tried to stop a service when you were logged 
in as a normal user (i.e. not root)?  Try it. 

Why won’t it boot?  
There will be times when you have to reboot your machine in a nasty manner. 
One rule of thumb used by Systems Administration to solve some problems is 
"When in doubt, turn the power off, count to ten slowly, and turn the power 
back on". There will be times when the system won’t come back to you, 
DON’T PANIC! 
Possible reasons why the system won’t reboot include 

• hardware problems, 
Caused by both hardware failure and problems caused by human error (e.g. 
the power cord isn’t plugged in, the drive cable is the wrong way around)  

• defective boot floppies, drives or tapes,  

• damaged file systems,  

• improperly configured kernels, 
A kernel configured to use SCSI drives won’t boot on a system that uses an 
IDE drive controller.  

• errors in the rc scripts or the /etc/inittab  file.  

Solutions  

The following is a Systems Administration maxim 

Always keep a separate working method for booting the 
machine into at least single user mode.  

This method might be a boot floppy, CD-ROM or tape. The format doesn’t 
matter. What does matter that at anytime you can bring the system up in at 
least single user mode so you can perform some repairs. 

A separate mechanism to bring the system up single user mode will enable you 
to solve most problems involved with damaged file systems, improperly 
configured kernels and errors in the rc scripts.  

Boot and root disks 

The concept of boot and root disk are important to understanding how the 
booting process works and also in creating an alternative boot method for your 
system.  The definitions used are 

• boot disk 
This is the disk which contains the kernel of your system.   



85321, Systems Administration Chapter 12:  Startup and Shutdown 

David Jones (20.01.00) Page 332 

• root disk 
The root disk contains the root file system with all the necessary programs 
and files required for init to start and setup a minimum of services.  This 
includes such things as init, /etc/inittab and associated files, 
/etc/passwd and other information required to allow people to login 
plus a whole lot more. 

To have a complete alternative boot method you must have both alternative 
boot and root disks.  The alternative boot disk is useful if you have problems 
with your kernel.  The alternative root disk is required when you have 
problems such as a wrongly configured inittab or a missing 
/etc/passwd file. 

It is possible for a single disk to provide both boot and root disk services. 

Making a boot and root disk 

It is important that you have alternative boot and root disks for your system.  
There are (at least) two methods you can use to obtain them 

• use the installation disks which come with your distribution of Linux, 
In order to install Linux you basically have to have a functioning Linux 
computer.  Therefore the installation disk(s) that you used to install Linux 
provide an alternative boot and root disk. 

• use a rescue disk (set). 
A number of people have created rescue disks.  These are boot and root 
disk sets which have been configured to provide you with the tools you 
will need to rescue your system from problems. 

The resource materials section for week 7 on the 85321 Web site/CD-ROM 
contains pointers to two rescue disk sets. 

Exercises 

12.11. Create a boot and root disk set for your system using the resources on 
the 85321 Web site/CD-ROM. 

Using boot and root 

What do you think would happen if you did the following? 

rm /etc/inittab 

The next time you booted your system you would see something like this on 
the screen. 

INIT: version 2.71 booting 
INIT: No inittab file found 
 
Enter runlevel: 1 
INIT: Entering runlevel: 1 
INIT: no more processes left in this runlevel 

What’s happening here is that init can’t find the inittab file and so it can’t 
do anything.  To solve this you need to boot the system and replace the missing 



85321, Systems Administration Chapter 12:  Startup and Shutdown 

David Jones (20.01.00) Page 333 

inittab file.  This is where the alternative root and boot disk(s) come in 
handy. 

To solve this problem you would do the following 

• boot the system with the alternative boot/root disk set 

• login as root 

• perform the following 

/> mount –t ext2 /dev/hda2 /mnt 
mount: mount point /mnt does not exist 
/> mkdir /mnt  
/> mount –t ext2 /dev/hda1 /mnt  
EXT2-fs warning: mounting unchecked fs, running e2fsck is recommended 
/> cp /etc/inittab /mnt/etc/inittab  
/> umount /mnt 

A description of the above goes like this 

• Try to mount the usual root file system, the one with the missing 
inittab file.  But it doesn’t work. 

• Create the missing /mnt directory. 

• Now mount the usual root file system. 

• Copy the inittab file from the alternative root disk onto the usual root 
disk.  Normally you would have a backup tape which contains a copy of 
the old inittab file. 

• Unmount the usual root file system and reboot the system. 

The aim of this example is to show you how you can use alternative root and 
boot disks to solve problems which may prevent your system from booting. 

Exercises 

12.12. Removing the /etc/inittab file from your Linux system will not 
only cause problems when you reboot the machine.  It also causes 
problems when you try to shut the machine down.  What problems?  
Why? 

12.13. What happens if you forget the root password?  Without it you can’t 
perform any management tasks at all.  How would you fix this problem? 

12.14. Boot your system in the normal manner and comment out all the entries 
in your /etc/inittab  file that contain the word mingetty. What do 
you think is going to happen? Reboot your system. Now fix the problem 
using the installation floppy disks.  



85321, Systems Administration Chapter 12:  Startup and Shutdown 

David Jones (20.01.00) Page 334 

Solutions to hardware problems  
Some guidelines to solving hardware problems 

• check the power supply and its connections, 
Don’t laugh, there are many cases I know of in which the whole problem 
was caused by the equipment not being plugged in properly or not at all.  

• check the cables and plugs on the devices,  

• check any fault lights on the hardware,  

• power cycle the equipment (power off, power on),  
There is an old Systems Administration maxim. If something doesn’t work 
turn it off, count to 10 very slowly and turn it back on again (usually with 
the fingers crossed). Not only can it solve problems but it is also a good 
way of relaxing.  Of course this is a last resort and in some cases may not 
be available.  For example, if you are in charge of a machine which is 
required to have 24x7 availability. 

• try rebooting the system without selected pieces of hardware, 
It may be only one faulty device that is causing the problem. Try isolating 
the problem device.  

• use any diagnostic programs that are available, or as a last resort  

• call a technician or a vendor.  

Damaged file systems  

Previous chapters examined file systems and backups.  Fixing a damaged file 
system involved first trying to use the fsck command and if that fails using 
backups. 

Improperly configured kernels  

The kernel contains most of the code that allows the software to talk to your 
hardware. If the code it contains is wrong then your software won’t be able to 
talk to your hardware. In a later chapter on the kernel we’ll explain in more 
detail why you might want to change the kernel and why it might not work.  

Suffice to say you must always maintain a working kernel that you can boot 
your system with.  

Shutting down  
You should not just simply turn a UNIX computer off or reboot it. Doing so 
will usually cause some sort of damage to the system especially to the file 
system. Most of the time the operating system may be able to recover from 
such a situation (but NOT always). 

There are a number of tasks that have to be performed for a UNIX system to be 
shutdown cleanly 



85321, Systems Administration Chapter 12:  Startup and Shutdown 

David Jones (20.01.00) Page 335 

• tell the users the system is going down, 
Telling them 5 seconds before pulling the plug is not a good way of 
promoting good feeling amongst your users. Wherever possible the users 
should know at least a couple of days in advance that the system is going 
down (there is always one user who never knows about it and complains).  

• signal the currently executing processes that it is time for them to die, 
UNIX is a multi-tasking operating system. Just because there is no-one 
logged in this does not mean that there is nothing going on. You must 
signal all the current running processes that it is time to die gracefully.  

• place the system into single user mode, and 

• perform sync to flush the file systems buffers so that the physical state of 
the file system matches the logical state. 

Most UNIX systems provide commands that perform these steps for you.  

As computers become more important to the operation of a business systems 
must have 24x7 availability.  Imagine how much money Amazon.com or eBay 
lose if and when their computers are unavailable.  In these situations shutting 
down a computer usually involves ensuring that there is another computer 
already running which will take over operations. 

Reasons Shutting down  

In general, you should try to limit the number of times you turn a computer on 
or off as doing so involves some wear and tear. It is often better to simply 
leave the computer on 24 hours a day. In the case of a UNIX system being 
used for a mission critical application by some business it may have to be up 
24 hours a day. 

Some of the reasons why you may wish to shut a UNIX system down include 

• general housekeeping, 
Every time you reboot a UNIX computer it will perform some important 
housekeeping tasks, including deleting files from the temporary directories 
and performing checks on the machines file systems. Rebooting will also 
get rid of any zombie processes.  

• general failures, and 
Occasionally problems will arise for which there is only one resort, 
shutdown. These problems can include hanging logins, unsuccessful mount 
requests, dazed devices, runaway processes filling up disk space or CPU 
time and preventing any useful work being done.  

• system maintenance and additions. 
There are some operations that only work if the system is rebooted or if the 
system is in single user mode, for example adding a new device.  

Being nice to the users  

Knowing of the existence of the appropriate command is the first step in 
bringing your UNIX computer down. The other step is outlined in the heading 
for this section. The following command is an example of what not to do. 



85321, Systems Administration Chapter 12:  Startup and Shutdown 

David Jones (20.01.00) Page 336 

shutdown -h -1 now  

Under Linux this results in a message somewhat like this appearing on every 
user’s terminal 

THE SYSTEM IS BEING SHUT DOWN NOW ! ! ! 
Log off now or risk your files being damaged. 

and the user will almost immediately be logged out. 

This is not a method inclined to win friends and influence people. The 
following is a list of guidelines of how and when to perform system shutdowns 

• shutdowns should be scheduled, 
If users know the system is coming down at specified times they can 
organise their computer time around those times.  

• perform a regular shutdown once a week, and 
A guideline, so that the housekeeping tasks discussed above can be 
performed. If it’s regular the users get to know when the system will be 
going down.  

• use /etc/motd . 
/etc/motd  is a text file that contains the message the users see when they 
first log onto a system. You can use it to inform users of the next scheduled 
shutdown.  

• /etc/motd is rarely used these days.  It’s really only visible when you logon 
to the command line of a UNIX machine.  Not to many people do that 
these days.  Alternatives are available including increased use of staff 
mailing lists. 

Commands to shutdown  
There are a number of different methods for shutting down and rebooting a 
system including  

• the shutdown  command 
The most used method for shutting the system down. The command can 
display messages at preset intervals warning the users that the system is 
coming down.  
Most Linux computers are configured so that the three-fingered salute 
(CTRL-ALT-DEL) will automatically cause the shutdown command to be 
executed.  Refer back to your /etc/inittab file and see if you can see the 
entry for it. 

• the halt  command  
Logs the shutdown, kills the system processes, executes sync and halts 
the processor.  

• the reboot  command 
Similar to halt but causes the machine to reboot rather than halting.  

• sending init  a TERM signal, 
init  will usually interpret a TERM signal (signal number 15) as a command 
to go into single user mode. It will kill of user processes and daemons. The 



85321, Systems Administration Chapter 12:  Startup and Shutdown 

David Jones (20.01.00) Page 337 

command is kill -15 1  (init  is always process number 1). It may not 
work or be safe on all machines.  

• the fasthalt  or fastboot  commands 
These commands create a file /fastboot before calling halt  or reboot . 
When the system reboots and the startup scripts find a file /fastboot they 
will not perform a fsck  on the file systems. 

The most used method will normally be the shutdown command. It provides 
users with warnings and is the safest method to use.  

shutdown   

The format of the command is  

shutdown [ -h | -r ] [ -fqs ] [ now | hh:ss | +mins ]  

The parameters are 

• -h  
Halt the system and don’t reboot.  

• -r  
Reboot the system  

• -f  
Do a fast boot.  

• -q  
Use a default broadcast message.  

• -s  
Reboot into single user mode by creating a /etc/singleboot  file. 

The time at which a shutdown should occur are specified by the 

now hh:ss +mins  options. 

• now 
Shut down immediately.  

• hh:ss  
Shut down at time hh:ss.  

• +mins  
Shut down mins minutes in the future.  

The default wait time before shutting down is two minutes.  

What happens 

The procedure for shutdown is as follows  

• five minutes before shutdown or straight away if shutdown is in less than 
five minutes 
The file /etc/nologin  is created. This prevents any users (except root) 
from logging in. A message is also broadcast to all logged in users 
notifying them of the imminent shutdown.  



85321, Systems Administration Chapter 12:  Startup and Shutdown 

David Jones (20.01.00) Page 338 

• at shutdown time. 
All users are notified. init  is told not to spawn any more getty processes. 
Shutdown time is written into the file /var/log/wtmp . All other processes 
are killed. A sync is performed. All file systems are unmounted. Another 
sync  is performed and the system is rebooted.  

The other commands  

The other related commands including reboot, fastboot, halt, fasthalt  
all use a similar format to the shutdown command. Refer to the man pages for 
more information.  

Conclusions  
Booting and shutting down a UNIX computer is significantly more complex 
than performing the same tasks with a MS-DOS computer. A UNIX computer 
should never just be shut off.  

The UNIX boot process can be summarised into a number of steps  

• the hardware ROM or BIOS performs a number of tasks including loading 
the bootstrap program,  

• the bootstrap program loads the kernel,  

• the kernel starts operation, configures the system and runs the init process  

• init  consults the /etc/inittab  file and performs a number of necessary 
actions. 

One of the responsibilities of the init process is to execute the startup scripts 
that, under Linux, reside in the /etc/rc.d  directory.  
It is important that you have at least one other alternative method for booting 
your UNIX computer.  

There are a number of methods for shutting down a UNIX computer.  The 
most used is the shutdown command.  

Review Questions 
12.1  

What would happen if the file /etc/inittab  did not exist? Find out.  

12.2  

How would you fix the following problems? 
U The kernel for your Linux computer has been accidentally deleted. 
V The /etc/fstab file for your system has been moved to 

/usr/local/etc/fstab. 

12.3  

Explain each of the following inittab  entries  
W

s1:45:respawn:/sbin/agetty 19200 ttyS0 vt100   



85321, Systems Administration Chapter 12:  Startup and Shutdown 

David Jones (20.01.00) Page 339 

X id:5:initdefault:  

Y

si:S:sysinit:/etc/rc.d/rc.S   

12.4 

Your boss has decided that you should prevent people from being able to boot 
your Linux server via a floppy by modifying the BIOS configuration.  Why 
does this increase the security of the server somewhat?  What problems might 
this approach have? 

 



85321, Systems Administration Chapter 13:  Kernel 

David Jones (20.01.00) Page 340 

Chapter 
Kernel 

The bit of the nut that you eat? 
Well, not exactly. The kernel is the core of the operating system; it is the 
program that controls the basic services that are utilised by user programs; it is 
this suite of basic services in the form of system calls that make an operating 
system "UNIX".  

The kernel is also responsible for:  

• CPU resource scheduling (with the associated duties of process 
management)  

• Memory management (including the important implementation of 
protection)  

• Device control (including providing the device-file/device-driver interface)  

• Security (at a device, process and user level)  

• Accounting services (including CPU usage and disk quotas)  

• Inter Process Communication (shared memory, semaphores and message 
passing)  

The Linux Kernel FAQ sums it up nicely with:  

The Unix kernel acts as a mediator for your programs. First, it does  
the memory management for all of the running programs (processes), 
and makes sure that they all get a fair (or unfair, if you please) 
share of the processor’s cycles. In addition, it provides a nice, 
fairly portable interface for programs to talk to your hardware. 

Obviously, there is more to the kernel’s operation than this, but the 
basic functions above are the most important to know. 

Other  Resources 
Other resources which discuss kernel related matters include 

• HOW-TOs 
Kernel HOWTO, Kerneld mini-HOWTO, LILO mini-HOWTO, Modules 
mini HOW-TO 

• The Linux Kernel 
A book, available from the LDP (on the 85321 CD-ROM), which describes 
the principles and mechanisms used by the Linux Kernel (version 2.0.33). 

• Linux Kernel Module Programming Guide 
A book, available from the LDP, which describes how to write kernel 
modules. 



85321, Systems Administration Chapter 13:  Kernel 

David Jones (20.01.00) Page 341 

• Linux Device Drivers 
A book from O’Relly describing how to write device drivers for Linux. 
http://www.ora.com/catalog/linuxdrive/ 

• LAME 
A book from the LDP which includes sections on Linux Kernel Upgrades, 
Upgrading a Red Hat Stock Kernel, Building a Custom Kernel, and 
Moving to the Linux 2.2.x Kernels. 

• The RedHat 6.1 Reference Guide 
Includes a number of sections describing the process for configuring and 
compiling kernels. 

• The Linux Kernel Archives 
http://www.kernel.org/  The primary site for the source of the Linux kernel. 

• The International Kernel Patch 
http://www.kerneli.org/  Where the Linux kernel, with fully-fledged 
cryptographic support, is distributed (sites in the US can’t legally distribute 
it). 

• Kernel Notes 
http://www.kernelnotes.org/  A collection of very good links to everything 
Linux and kernel related. 

Why? 
Why study the kernel? Isn’t that an operating-system-type-thing? What does a 
Systems Administrator have to do with the internal mechanics of the OS?  

Lots.  

UNIX is usually provided with the source for the kernel (there are exceptions 
to this in the commercial UNIX world). The reason is that this allows Systems 
Administrators to directly customise the kernel for their particular system. A 
Systems Administrator might do this because:  

• They have modified the system hardware (adding devices, memory, 
processors etc.).  

• They wish to optimise the memory usage (called reducing the kernel 
footprint).  

• The speed and performance of the system may need improvement (eg. 
modify the quantum per task to suit CPU intensive vs IO intensive 
systems). This process (along with optimising memory) is called tweaking.  

• Improvements to the kernel can be provided in the form of source code 
which then allows the Systems Administrator to easily upgrade the system 
with a kernel recompile.  

Recompiling the kernel is the process whereby the kernel is 
reconfigured, the source code is regenerated/recompiled and a 
linked object is produced. Throughout this chapter the concept 
of recompiling the kernel will mean both the kernel source code 
compilation and linkage.   



85321, Systems Administration Chapter 13:  Kernel 

David Jones (20.01.00) Page 342 

How? 
In this chapter, we will be going through the step-by-step process of compiling 
a kernel, a process that includes:  

• Finding out about your current kernel (what version it is and where it is 
located?) 

• Obtaining the kernel (where do you get the kernel source, how do you 
unpack it and where do you put it?) 

• Obtaining and reading documentation (where can I find out about my new 
kernel source?) 

• Configuring your kernel (how is this done, what is this doing?) 

• Compiling your kernel (how do we do this?) 

• Testing the kernel (why do we do this and how?) 

• Installing the kernel (how do we do this?) 

But to begin with, we really need to look at exactly what the kernel physically 
is and how it is generated.  

To do this, we will examine the Linux kernel, specifically on the x86 
architecture.  

The lifeless image 
The kernel is physically a file that is usually located in the /boot directory. 
Under Linux, this file is called vmlinuz. On my system, an ls listing of the 
kernel produced:  

bash# ls -al  /boot/vml* 
lrwxrwxrwx   1 root     root           14 Jan  2 23:44 /boot/vmlinuz -> vmlinuz-2.0.31 
-rw-r--r--   1 root     root       444595 Nov 10 02:59 /boot/vmlinuz-2.0.31 

You can see in this instance that the “kernel file” is actually a link to another 
file containing the kernel image.  The actual kernel size will vary from 
machine to machine. The reason for this is that the size of the kernel is 
dependant on what features you have compiled into it, what modifications 
you've make to the kernel data structures and what (if any) additions you have 
made to the kernel code.  

vmlinuz  is referred to as the kernel image. At a physical level, this file consists 
of a small section of machine code followed by a compressed block. At boot 
time, the program at the start of the kernel is loaded into memory at which 
point it uncompresses the rest of the kernel.  

This is an ingenious way of making the physical kernel image on disk as small 
as possible; uncompressed the kernel image could be around one megabyte.  

So what makes up this kernel?  



85321, Systems Administration Chapter 13:  Kernel 

David Jones (20.01.00) Page 343 

Kernel gizzards 

An umcompressed kernel is really a giant object file; the product of C and 
assembler linking - the kernel is not an "executable" file (i.e. you just can’t type 
vmlinuz  at the prompt to run the kernel). The actual source of the kernel is 
stored in the /usr/src/linux  directory; a typical listing may produce:  

[jamiesob@pug jamiesob]$ ls -al /usr/src 
total 4 
drwxr-xr-x   4 root     root         1024 Jan  2 23:53 . 
drwxr-xr-x  18 root     root         1024 Jan  2 23:45 .. 
lrwxrwxrwx   1 root     root           12 Jan  2 23:44 linux -> linux-2.0.31 
drwxr-xr-x   3 root     root         1024 Jan  2 23:44 linux-2.0.31 
drwxr-xr-x   7 root     root         1024 Jan  2 23:53 redhat 

/usr/src/linux  is a soft link to /usr/src/<whatever linux 

version> -  this means you can store several kernel source 
trees - however - you MUST change the soft link of 

/usr/src/linux  to the version of the kernel you will be 
compiling as there are several components of the kernel source 
that rely on this.   

SPECIAL NOTE:  If your system doesn’t have a /usr/src/linux or a 
/usr/src/linux* directory (where * is the version of the Linux source) or 
there is a /usr/src/linux directory but it only has a couple of files then you don’t 
have the source code installed on your machine.  The quick solution is to 
installed the RPM file containing the kernel source code from the Redhat CD-
ROM.  You might want to download a more recent version from the Internet. 

If you are unsure about how to install a RPM file please refer to the Redhat 
guides. 

A typical listing of /usr/src/linux  produces:  

-rw-r--r--   1 root     root            2 May 12  1996 .version 
-rw-r--r--   1 root     root         6282 Aug  9  1994 CHANGES 
-rw-r--r--   1 root     root        18458 Dec  1  1993 COPYING 
-rw-r--r--   1 root     root        21861 Aug 17  1995 CREDITS 
-rw-r--r--   1 root     root         3221 Dec 30  1994 Configure 
-rw-r--r--   1 root     root         2869 Jan 10  1995 MAGIC 
-rw-r--r--   1 root     root         7042 Aug 17  1995 Makefile 
-rw-r--r--   1 root     root         9817 Aug 17  1995 README 
-rw-r--r--   1 root     root         3114 Aug 17  1995 README.modules 
-rw-r--r--   1 root     root        89712 May 12  1996 System.map 
drwxr-xr-x   6 root     root         1024 May 10  1996 arch/ 
drwxr-xr-x   7 root     root         1024 May 10  1996 drivers/ 
drwxr-xr-x  13 root     root         1024 May 12  1996 fs/ 
drwxr-xr-x   9 root     root         1024 May 12  1996 include/ 
drwxr-xr-x   2 root     root         1024 May 12  1996 init/ 
drwxr-xr-x   2 root     root         1024 May 12  1996 ipc/ 
drwxr-xr-x   2 root     root         1024 May 12  1996 kernel/ 
drwxr-xr-x   2 root     root         1024 May 12  1996 lib/ 
drwxr-xr-x   2 root     root         1024 May 12  1996 mm/ 
drwxr-xr-x   2 root     root         1024 Jan 23  1995 modules/ 
drwxr-xr-x   4 root     root         1024 May 12  1996 net/ 
-rw-r--r--   1 root     root          862 Aug 17  1995 versions.mk 
-rwxr-xr-x   1 root     root       995060 May 12  1996 vmlinux 



85321, Systems Administration Chapter 13:  Kernel 

David Jones (20.01.00) Page 344 

Take note of the vmlinux (if you have one)  file - this is the uncompressed 
kernel! Notice the size? [vmlinuz  is the .z (or compressed) version of 
vmlinux  plus the decompression code]  

Within this directory hierarchy are in excess of 1300 files and directories. On 
my system this consists of around 400 C source code files, 370 C header files, 
40 Assembler source files and 46 Makefiles. These, when compiled, produce 
around 300 object files and libraries. At a rough estimate, this consumes 
around 16 megabytes of space (this figure will vary).  

While this may seem like quite a bit of code, much of it actually isn’t used in 
the kernel. Quite a large portion of this is driver code; only drivers that are 
needed on the system are compiled into the kernel, and then only those that are 
required at run time (the rest can be placed separately in things called modules; 
we will examine this later).  

The various directories form logical divisions of the code, especially between 
the architecture dependant code (linux/arch ), drivers (linux/drivers ) and 
architecture independent code. By using grep and find , it is possible to trace 
the structure of the kernel program, look at the boot process and find out how 
various parts of it work.  

The first incision 
An obvious place to start with any large C program is the void main(void) 
function. If you grep every source file in the Linux source hierarchy for this 
function name, you will be sadly disappointed.  

As I pointed out earlier, the kernel is a giant object file - a series of compiled 
functions. It is NOT executable. The purpose of void main(void) in C is to 
establish a framework for the linker to insert code that is used by the operating 
system to load and run the program. This wouldn’t be of any use for a kernel - 
it is the operating system!  

This poses a difficulty - how does an operating system run itself?  

Making the heart beat... 

In the case of Linux, the following steps are performed to boot the kernel:  

• The boot loader program (e.g. lilo) starts by loading the vmlinuz from 
disk into memory, then starts the code executing. 

• After the kernel image is decompressed, the actual kernel is started. This 
part of the code was produced from assembler source; it is totally machine 
specific. The code for this is located in the 
/usr/src/linux/arch/i386/kernel/head.S  file. Technically at this 
point the kernel is running. This is the first process (0) and is called 
swapper. Swapper does some low level checks on the processor, memory 
and FPU availability, then places the system into protected mode. Paging is 
enabled. 



85321, Systems Administration Chapter 13:  Kernel 

David Jones (20.01.00) Page 345 

• Interrupts are disabled (every one) though the interrupt table is set up for 
later use. The entire kernel is realigned in memory (post paging) and some 
of the basic memory management structures are created. 

• At this point, a function called start_kernel  is called. start_kernel  is 
physically located in /usr/src/linux/init/main.c  and is really the core 
kernel function - really the equivalent of the void main(void) .   main.c 

itself is virtually the root file for all other source and header files. 

• Tests are run (the FPU bug in Pentium chip is identified amongst other 
checks including examinations on the DMA chip and bus architecture) and 
the BogoMip setting is established. 

• start_kernel  sets up the memory, interrupts and scheduling. In effect, the 
kernel has now has multi-tasking enabled. The console already has had 
several messages displayed to it. 

• The kernel command line options are parsed (those passed in by the boot 
loader) and all embedded device driver modules are initialised. 

• Further memory initialisations occur, socket/networking is started and 
further bug checks are performed. 

• The final action performed by swapper is the first process creation with 
fork  whereby the init program is launched. Swapper now enters an 
infinite idle loop. 

It is interesting to note that as a linear program, the kernel has finished 
running! The timer interrupts are now set so that the scheduler can step in and 
pre-empt the running process. However, sections of the kernel will be 
periodically executed by other processes.  

This is really a huge oversimplification of the kernel’s structure, but it does 
give you the general idea of what it is, what it is made up of and how it loads.  

Modules 

A module is a dynamically loadable object file containing functions for 
interfacing with a particular device or performing particular tasks. The concept 
behind modules is simple; to make a kernel smaller (in memory), keep only the 
bare basics compiled into the kernel. When the kernel needs to use devices, let 
it load modules into memory. If it doesn’t use the modules, let them be 
unloaded from memory.  

This concept has also revolutionised the way in which kernels are compiled. 
No longer do you need to compile every device driver into the kernel; you can 
simply mark some as modules. This also allows for separate module 
compilation - if a new device driver is released then it is a simple case of 
recompiling the module instead of the entire kernel.  

Modules work by the kernel communicating with a program called kerneld. 
kerneld  is run at boot time just like a normal daemon process. When the 
kernel notices that a request has come in for the use of a module, it checks if it 
is loaded in memory. If it is, then the routine is run, however, if not, the kernel 
gets kerneld  to load the module into memory. kerneld also removes the 



85321, Systems Administration Chapter 13:  Kernel 

David Jones (20.01.00) Page 346 

module from memory if it hasn’t been used in a certain period of time 
(configurable).  

 The concept of modules is a good one, but there are some things you should 
be aware of:  

• Frequently used devices and devices required in the boot process (like the 
hard disk) should not be used as modules; these must be compiled into the 
kernel. 

• While the concept of modules is great for systems with limited memory, 
should you use them? Memory is cheap - compiling an object into the 
kernel rather than leaving it as a module may use more memory but is that 
better than a system that uses its CPU and IO resources to constantly load 
and unload modules? There are trade offs between smaller kernels and 
CPU/IO usage with loadable modules. 

• It is probably a good idea to modularise devices like the floppy disk, CD-
ROM and parallel port - these are not used very often, and when they are, 
only for a short time. 

• It is NOT a good idea to modularise frequently used modules like those 
which control networking. 

There is quite a bit more to kernel modules.  

The proc file system 
Part of the kernel’s function is to provide a file-based method of interaction 
with its internal data structures; it does this via the /proc virtual file system.  

The /proc  file system technically isn’t a file system at all; it is in fact a 
window on the kernel’s internal memory structures. Whenever you access the 
/proc  file system, you are really accessing kernel memory.  

So what does it do?  

Effectively the /proc  file system is providing an instant snapshot of the status 
of the system. This includes memory, CPU resources, network statistics and 
device information. This data can be used by programs to gather information 
about a system, an example of which is the top program. top scans through 
the /proc  structures and is able to present the current memory, CPU and swap 
information, as given below:  

  7:12pm  up  9:40,  1 user,  load average: 0.00, 0.00, 0.10 
  34 processes: 33 sleeping, 1 running, 0 zombie, 0 stopped 
  CPU states:  0.5% user,  0.9% system,  0.0% nice, 98.6% idle 
  Mem:  14940K av, 13736K used,  1204K free,  5172K shrd,  1920K buff 
  Swap: 18140K av,  2304K used, 15836K free 
 
  PID USER     PRI  NI SIZE  RES SHRD STAT %CPU %MEM  TIME COMMAND 
  789 jamiesob  19   0  102  480  484 R     1.1  3.2  0:01 top 
   98 root      14   0 1723 2616  660 S     0.3 17.5 32:30 X :0 
    1 root       1   0   56   56  212 S     0.0  0.3  0:00 init [5] 
   84 jamiesob   1   0  125  316  436 S     0.0  2.1  0:00 -bash 
   96 jamiesob   1   0   81  172  312 S     0.0  1.1  0:00 sh /usr/X11/bin/star 
   45 root       1   0   45  232  328 S     0.0  1.5  0:00 /usr/sbin/crond -l10 
    6 root       1   0   27   72  256 S     0.0  0.4  0:00 (update) 
    7 root       1   0   27  112  284 S     0.0  0.7  0:00 update (bdflush) 
   59 root       1   0   53  176  272 S     0.0  1.1  0:00 /usr/sbin/syslogd 
   61 root       1   0   40  144  264 S     0.0  0.9  0:00 /usr/sbin/klogd 



85321, Systems Administration Chapter 13:  Kernel 

David Jones (20.01.00) Page 347 

   63 bin        1   0   60    0  188 SW    0.0  0.0  0:00 (rpc.portmap) 
   65 root       1   0   58    0  180 SW    0.0  0.0  0:00 (inetd) 
   67 root       1   0   31    0  180 SW    0.0  0.0  0:00 (lpd) 
   73 root       1   0   84    0  208 SW    0.0  0.0  0:00 (rpc.nfsd) 
   77 root       1   0  107  220  296 S     0.0  1.4  0:00 sendmail:accepting 

The actual contents of the /proc file system on my system look like:  
psyche:~$ ls /proc 
1/           339/         7/           87/          dma          modules 
100/         45/          71/          88/          filesystems  net/ 
105/         451/         73/          89/          interrupts   pci 
108/         59/          77/          90/          ioports      self/ 
109/         6/           793/         96/          kcore        stat 
116/         61/          80/          97/          kmsg         uptime 
117/         63/          84/          98/          ksyms        version 
124/         65/          85/          cpuinfo      loadavg 
338/         67/          86/          devices      meminfo 

Each of the numbered directories store state information of the process by their 
PID. The self/  directory contains information for the process that is viewing 
the /proc  filesystem, i.e. - YOU. The information stored in this directory looks 
like:  

cmdline                 (Current command line) 
cwd - [0303]:132247    (Link to the current working directory) 
environ                 (All environment variables) 
exe - [0303]:109739    (Currently executing code) 
fd/                     (Directory containing virtual links to  
                         file handles) 
maps|                   (Memory map structure) 
root - [0303]:2        (Link to root directory) 
stat                    (Current process statistics) 
statm                   (Current memory statistics) 

Most of these files can be cat’ed to the screen. The /proc/filesystems  file, 
when cat’ed, lists the supported file systems. The /proc/cpuinfo  file gives 
information about the hardware of the system:  

psyche:~$ cat /proc/cpuinfo 
cpu             : 586 
model           : Pentium 90/100 
mask            : E 
vid             : GenuineIntel 
fdiv_bug        : no 
math            : yes 
hlt             : yes 
wp              : yes 
Integrated NPU  : yes 
Enhanced VM86   : yes 
IO Breakpoints  : yes 
4MB Pages       : yes 
TS Counters     : yes 
Pentium MSR     : yes 
Mach. Ch. Exep. : yes 
CMPXCHGB8B      : yes 
BogoMips        : 39.94 

Be aware that upgrading the kernel may mean changes to the structure of the 
/proc  file system. This may require software upgrades.  Information about this 
should be provided in the kernel README files.  



85321, Systems Administration Chapter 13:  Kernel 

David Jones (20.01.00) Page 348 

Exercises 

13.1. Find out where kerneld  is launched from. 

13.2. What is the purpose of /sbin/lsmod ? Try it.  What is the contents of 
the file /proc/modules? 

13.3. Find out where your kernel image is located and how large it is. 

13.4. Examine the /proc  file system on you computer. What do you think the 
/proc/kcore  file is? Hint: Have a look at the size of the file. 

Really, why bother? 
The most common reason to recompile the kernel is because you’ve added 
some hardware and you want the kernel to recognise and (if you’re lucky) use 
it. A very good time to recompile your kernel is after you’ve installed Linux. 
The reason for this is that the original Linux kernel provided has extra drivers 
compiled into it which consume memory. Funnily enough, while the kernel 
includes a driver for communicating in EBCDIC via a 300 baud modem to a 
coke machine sitting in the South Hungarian embassy in Cairo [Makefile 
Question:  

Do you want to include support for coke machines located in Cairo? 
[Y],N,M?   
Do you want to support South Hungarian Embassy Models [Y],N,M?   
Support for 300 baud serial link [Y],N,M?   
Support EBCDIC communication[Y],N,M?   

(I might be making this up... :)]  

 ...the kernel, by default, doesn’t have support for some very common sound 
cards and network devices! To be fair, there are good reasons for this (IRQ 
conflicts etc.) but this does mean a kernel recompile is required.  

Another good reason to modify the kernel is to customise some of its data 
structures for your system. Possible modifications include increasing the 
number of processes the kernel can support (this is a fixed array and can’t be 
set on run time) or modifying the size of certain buffers.  

One of the great benefits of having the source code for the operating system is 
that you can play OS-Engineer; it is possible for you to change the scheduling 
algorithm, memory management scheme or the IPC functionality.  

While it might be nice to go and do these things, it would be 
unadvisable to modify the API if you want your programs to 
still run under Linux. However, there is nothing to stop you 
adding to the API. You may, for example, wish to add a system 
call to print "Hello World " to the screen (this would obviously 
be of great benefit to the rest of the Linux community ;) - this is 
possible for you to do.   

Strangely enough, to modify the kernel, you need kernel source code. The 
actual source can be obtained from a variety of locations. For users who 
installed Linux from CD ROM, the source can be found within the distribution. 



85321, Systems Administration Chapter 13:  Kernel 

David Jones (20.01.00) Page 349 

Typically you will actually go back into the installation menu and install only 
the section that contains the source.  

However, more often than not, you are actually seeking to upgrade the kernel, 
so you need the latest kernel source. Because the development of the Linux 
kernel is an on-going process, new versions of development kernels are 
constantly being released. It is not unusual for development kernels to be 
released as often as once per day!  

The Kernel HOWTO describes some ways to obtain kernels:  

You can obtain the source via anonymous ftp from ftp.kernel.org in 
/pub/linux/kernel/vx.y, where x.y is the version(eg 2.2), and as 
mentioned before, the ones that end with an odd number are 
development releases and may be unstable. It is typically labelled 
linux-x.y.z.tar.gz, where x.y.z is the version number. The sites also 
typically carry ones with a suffix of .bz2, which have been 
compressed with bzip2 (these files will be smaller and take less time 
to transfer).  
 
It’s best to use ftp.xx.kernel.org where xx is your country code; 
examples being ftp.at.kernel.org for Austria, and ftp.us.kernel.org 
for the United States.  

Generally you will only want to obtain a "stable" kernel version.  Kernels with 
even minor numbers are the stable kernels.  Kernels with odd minor numbers 
in the version are the development kernels.  My current kernel is 2.2.12-20.  
The minor number in the version number is 2 (the second one) indicating a 
stable production kernel.   

The 2.3.X range of kernels is where people are working on new features for the 
Linux kernel. 

As of writing this section (January 12, 1999) the latest versions are 2.2.14 for 
the stable version and 2.3.39 for the development branch.  I need to upgrade 
the kernel on my machine. 

If you have an extremely new type of hardware then you are 
often forced into using developmental kernels. There is nothing 
wrong with using these kernels, but beware that you may 
encounter system crashes and potential losses of data. During a 
one year period, the author obtained around twenty 
developmental kernels, installed them and had very few 
problems. For critical systems, it is better to stick to known 
stable kernels.   

RedHat and other companies which distribute versions of Linux make the 
latest kernel sources available in distribution specific formats.  For example, 
RedHat primarily uses the RPM package manager. 

So, you’ve obtained the kernel source - it will be in one large, compressed file.  
You know have to unpack the archive.  If you are unsure the Linux Kernel 
HOWTO provides some guidance as does the Redhat guides. 

A couple of points to note.  

• Some sources install to directories given by the kernel version, not to the 
linux  directory. It may be worth checking on this before you unpack the 



85321, Systems Administration Chapter 13:  Kernel 

David Jones (20.01.00) Page 350 

source by issuing the following command.  It will list all the files and 
directories that are contained in the source_filename, the kernel 
archive. 

tar -txvf source_filename 

• This will display a list of files and where they are to be installed. If they are 
to be installed into a directory other than linux then you must make a 
symbolic link, called linux  in the /usr/src  directory to the directory that 
contains the new source.  

• NEVER just delete your old source - you may need it to recompile your 
old kernel version if you find the new version isn’t working out, though we 
will discuss other ways round this problem in later sections. 

If you are upgrading your kernel regularly, an alternative to constantly 
obtaining the complete kernel source is to patch your kernel.  

Patches are basically text files that contain a list of differences between two 
files. A kernel patch is a file that contains the differences between all files in 
one version of the kernel to the next.  

Why would you use them? The only real reason is to reduce download time 
and space. A compressed kernel source can be extremely large whereas 
patches are relatively small.  

Patches are produced as the output from the diff command. For example, 
given two files:  

file1 
 
"vi is a highly exciting program with a wide range of great features – I am sure that 
we will adopt it as part of our PlayPen suite" 
        - Anonymous Multimillionaire Software Farmer 
 
file2 
 
"vi is a mildly useless program with a wide range of missing features – I am sure that 
we will write a much better product; we'll call it `Sentence'" 

        - Anonymous Multimillionaire Software Farmer 

After executing the command:  

diff file1 file2  file3 

file2  would contain:  
1,2c1,2 
< "vi is a highly exciting program with a wide range of great features - I 
< am sure that we will adopt it as part of our PlayPen suite" 
--- 
"vi is a mildly useless program with a wide range of missing features - I 
am sure that we will write a much better product; we'll call it `Sentence'" 

To apply a patch, you use the patch command. patch expects a file as a 
parameter to apply the patch to, with the actual patch file as standard input. 
Following the previous example, to patch file1 with file3  to obtain file2 , 
we’d use the following command:  

patch file1 < file3 

This command applies the file3 patch to file1 . After the command, file1  is 
the same as file2  and a file called file1.orig  has been created as a backup 
of the original file1 .  



85321, Systems Administration Chapter 13:  Kernel 

David Jones (20.01.00) Page 351 

The Linux HOWTO further explains applying a kernel patch:  
 Incremental upgrades of the kernel are distributed as patches. For example, 
if you have version 1.1.45, and you notice that there’s a ‘patch46.gz’ out 
there for it, it means you can upgrade to version 1.1.46 through application 
of the patch. You might want to make a backup of the source tree first 
(‘make clean’ and then ‘cd /usr/src; tar zcvf old-tree.tar.gz linux’ will 
make a compressed tar archive for you.).  
 
So, continuing with the example above, let’s suppose that you have 
‘patch46.gz’ in /usr/src. cd to /usr/src and do a 
‘zcat patch46.gz | patch -p0’ (or ‘patch -p0 < patch46’  
if the patch isn’t compressed). You’ll see things whizz by(or flutter by, if 
your system is that slow) telling you that it is trying to apply hunks, and 
whether it succeeds or not. Usually, this action goes by too quickly for you 
to read, and you’re not too sure whether it worked or not, so you might want 
to use the -s flag to patch, which tells patch to only report error messages 
(you don’t get as much of the ‘‘hey, my computer is actually doing something 
for a change!’’ feeling, but you may prefer this..). To look for parts which 
might not have gone smoothly, cd to /usr/src/linux and look for files with a 
.rej extension. Some versions of patch (older versions which may have been 
compiled with on an inferior filesystem) leave the rejects with a # 
extension. You can use ‘find’ to look for you;  
 
    find .  -name ’*.rej’ -print 
 
prints all files who live in the current directory or any subdirectories 
with a .rej extension to the standard output.  

Patches can be obtained from the same sites as the complete kernel sources.  

A couple of notes about patches:  

• For every new version of the kernel, there is a patch. To upgrade from a 
kernel version that is five versions behind the version you want, yo have to 
obtain and apply five patches (e.g. kernel n.n.1 upgrading to n.n.6 
requires patches: patch2, patch3, patch4, patch5 and patch6). This gets 
tedious and is often easier and quicker to simply obtain the entire kernel 
source again. 

• Patches are forever - when you patch your kernel source, you modify it for 
good. 

Documentation 
Every version of the kernel source comes with documentation. There are 
several "main" files you should read about your current source version 
including:  

• /usr/src/linux/README 

Instructions on how to compile the kernel 

• /usr/src/linux/MAINTAINERS 

A list of people who maintain the code 

• /usr/src/linux/Documentation/*  
Documentation for parts of the kernel. 

ALWAYS read the documentation after obtaining the source code for a new 
kernel, and especially if you are going to be compiling in a new kind of device. 



85321, Systems Administration Chapter 13:  Kernel 

David Jones (20.01.00) Page 352 

The Linux Kernel-HOWTO is essential reading for anything relating to 
compiling or modifying the kernel. 

Linux is the collaborative product of many people. This is something you 
quickly discover when examining the source code. The code (in general) is 
neat but sparsely commented; those comments that do exist can be absolutely 
riotous...well, at least strange :)  

These are just a selection of the quotes found in the /usr/src/linux/kernel  
directory:  

(fork.c) 
 
        Fork is rather simple, once you get the hang of it, but the memory 
        management can be a bitch. 
 
(exit.c) 
 
        "I ask you, have you ever known what it is to be an orphan?"        
 
(module.c) 
 
        ... This feature will give you ample opportunities to get to know 
        the taste of your foot when you stuff it into your mouth!!! 
 
(schedule.c) 
 
        The "confuse_gcc" goto is used only to get better assembly code.. 
        Dijkstra probably hates me.        
 
        To understand this, you have to know who Dijkstra was - remember OS? 
 
        ... disregard lost ticks for now.. We don’t care enough. 
 
(sys.c) 
 
        OK, we have probably got enough memory - let it rip.    
 
        This needs some heave checking ... 
        I just haven’t get the stomach for it. I also don’t fully 
        understand. Let somebody who does explain it. 
 
(time.c) 
 
        This is ugly, but preferable to the alternatives.  Bad, bad....      
 
        ...This is revolting. 

Apart from providing light entertainment, the kernel source comments are an 
important guide into the (often obscure) workings of the kernel.  

Modifying the Kernel 
The main reason for recompiling the kernel is to include support for new 
devices - to do this you simple have to go through the compile process and 
answer "Yes" to a few questions relating to the hardware you want. However, 
in some cases you may actually want to modify the way in which the kernel 
works, or, more likely, one of the data structures the kernel uses. This might 
sound a bit daunting, but with Linux this is a relatively simple process.  

For example, the kernel maintains a statically-allocated array for holding a list 
of structures associated with each process running on the system. When all of 



85321, Systems Administration Chapter 13:  Kernel 

David Jones (20.01.00) Page 353 

these structures are used, the system is unable to start any new processes. This 
limit is defined within the tasks.h  file located in 
/usr/src/linux/include/linux/  in the form of:  

/* 
* This is the maximum nr of tasks - change it if you need to 
*/ 
#define NR_TASKS        512 
#define MAX_TASKS_PER_USER (NR_TASKS/2) 
#define MIN_TASKS_LEFT_FOR_ROOT 4 

While 512 tasks may seem a lot, on a multiuser system this 
limit is quickly exhausted. Remember that even without a 
single user logged on, a Linux system is running between 30 
and 50 tasks. For each user login, you can (at peak periods) 
easily exceed 5 processes per user. Adding this to web server 
activity (some servers can be running in excess of one hundred 
processes devoted to processing incoming http requests), mail 
server, telnet, ftp and other network services, the 512 process 
limit is quickly reached.   

Increasing NR_TASKS and recompiling the kernel will allow more processes to 
be run on the system - the downside to this is that more memory will be 
allocated to the kernel data area in the form of the increased number of task 
structures (leaving less memory for user programs).  

Other areas you may wish to modify include buffer sizes, numbers of virtual 
terminals and memory structures. Most of these should be modifiable from the 
.h  files found in the kernel source "include " directories.  

There are, of course, those masochists (like myself) who can’t help tinkering 
with the kernel code and "changing" things (a euphemism for wrecking a nice 
stable kernel). This isn’t a bad thing (there is an entire team of kernel 
developers world-wide who spend quite a bit of time doing this) but you’ve got 
to be aware of the consequences - total system annihilation is one. However, if 
you feel confident in modifying kernel code, perhaps you should take a quick 
look at: /usr/src/linux/kernel/sched.c or /usr/src/linux/mm/memory.c   

(actually, look at the code anyway). These are two of the most important files 
in the kernel source, the first, sched.c is responsible for task scheduling. The 
second, memory.c  is responsible for memory allocation. Perhaps someone 
would like to modify memory.c so that when the kernel runs out of memory 
that the system simply doesn’t just "hang" (just one of my personal gripes 
there... ;)  

Compiling the source 
As we will discuss in the next section, ALL changes to the kernel should be 
compiled and tested on DISK before the "new" kernel is installed on the 
system. The following section will explain how this is done.  

• Obtain the source of the version before the latest kernel. Install the source 
in the appropriate directory. 



85321, Systems Administration Chapter 13:  Kernel 

David Jones (20.01.00) Page 354 

• Obtain the patch for the latest kernel source and apply it to the source files 
you previously retrieved. 

If you don’t have Internet access, do the same thing but using the CD-
ROM. Pick a version of the kernel source, install it, then patch it with the 
patch for the next version    

• Find out how to generate a patch file based on the differences between 
more than one file - what is the command that would recursively generate a 
patch file from two directories? (These puns are getting very sad)  

As you are aware (because you’ve read all the previous chapters and have been 
paying intense attention), make is a program use to compile source files, 
generate object files and link them. make actually lets the compilers do the 
work, however it co-ordinates things and takes care of dependencies. Important 
tip: Dependencies are conditions that exist due to that fact some actions have 
to be done after other actions - this is confusing, but wait, it gets worse. 
Dependencies also relate to the object of the action; in the case of make this 
relates to if the object (an object can be an object file or a source file) has been 
modified. For example, using our Humpty scenario:  

humpty (program) is made up of legs, arms and torso (humpty, being an egg 
lacked a neck, thus his torso and head are one) - these could be equated to 
object files. Humpty’s legs are made up of feet, shins and thighs - again, object 
files. Humpty’s feet are made up of toes and other bits (how do you describe an 
egg’s foot???) - these could be equated to source files. To construct humpty, 
you’d start at the simplest bits, like toes, and combine them with other bits to 
for the feet, then the legs, then finally, humpty.  

You could not, however, fully assemble the leg without assembling the foot. 
And if you modified Humpty’s toes, it doesn’t mean you’d have to recompile 
his fingers - you’d have to reconstruct the foot object, relink into a new leg 
object, which you’d link with the (pre compiled and unmodified) arms and 
torso objects - thus forming Humpty.  

make, while not specifically designed to handle broken egg reconstruction, 
does the same thing with source files - based entirely of rules which the user 
defines within a file called a Makefile. However, make is also clever enough 
to compile and link only the bits of a program that have been modified since 
the last compile.  

In the case of the kernel, a series of Makefiles are responsible for the kernel 
construction. Apart from calling compilers and linkers, make can be used for 
running programs, and in the case of the kernel, one of the programs it calls is 
an initialisation script.  

The steps to compile the kernel all make use of the make program. To compile 
the kernel, you must be in the /usr/src/kernel , and issue (in the following 
order and as the root user) these commands:  

make config or  make menuconfig or  make xconfig 
make dep 
make clean 
make zImage or  make zdisk 
make zlilo (if the previous was make zImage) 



85321, Systems Administration Chapter 13:  Kernel 

David Jones (20.01.00) Page 355 

If you are going to be using modules with your kernel, you will require the 
following two steps:  

make modules 
make modules_install 

The following is an explanation of each step.  

Configuration 

make config  is the first phase of kernel recompilation. Essentially make 

config  causes a series of questions to be issued to the user. These questions 
relate to what components should be compiled into the kernel. The following is 
a brief dialog from the first few questions prompted by make config:  

psyche:~/usr/src/linux$ make config 
 
rm -f include/asm 
( cd include ; ln -sf asm-i386 asm) 
/bin/sh scripts/Configure arch/i386/config.in 
# 
# Using defaults found in .config 
# 
* 
* Code maturity level options 
* 
Prompt for development and/or incomplete code/drivers 
(CONFIG_EXPERIMENTAL)[N/y?] n 
* 
* Loadable module support        
* 
Enable loadable module support (CONFIG_MODULES) [Y/n/?] Y 
Set version information on all symbols for modules 
(CONFIG_MODVERSIONS)[N/y/?] 
Kernel daemon support (e.g. autoload of modules) (CONFIG_KERNELD) 
[N/y/?] y  
* 
* General setup 
* 
Kernel math emulation (CONFIG_MATH_EMULATION) [Y/n/?] 

A couple of points to note:  

• Each of these questions has an automatic default (capitalised). This default 
will be changed if you choose another option; i.e. If the default is "N" and 
you answer "Y" then on the next compile the default will be "Y". This 
means that you can simply press "enter" through most of the options after 
your first compile. 

• These first few questions relate to the basic kernel setup: note the questions 
regarding modules. This is important to answer correctly, as if you wish to 
include loadable module support, you must do so at this point. 

As you progress further through the questions, you will be prompted for 
choosing support for specific devices, for example:  

* 
* Additional Block Devices 
* 
Loopback device support (CONFIG_BLK_DEV_LOOP) [N/y/m/?] 



85321, Systems Administration Chapter 13:  Kernel 

David Jones (20.01.00) Page 356 

Multiple devices driver support (CONFIG_BLK_DEV_MD) [N/y/?] 
RAM disk support (CONFIG_BLK_DEV_RAM) [Y/m/n/?] 
Initial RAM disk (initrd) support (CONFIG_BLK_DEV_INITRD) [N/y/?] 
XT harddisk support (CONFIG_BLK_DEV_XD) [N/y/m/?] 

In this case, note the "m" option? This specifies that the support for a device 
should be compiled in as a module - in other words, not compiled into the 
kernel but into separate modules.  

Be aware that there are quite a few questions to answer in make config. If at 
any point you break from the program, you must start over again. Some 
"sections" of make config , like the sound card section, save the results of the 
first make config  in a configuration file; you will be prompted to either 
reconfigure the sound card options or use the existing configurations file.  

There are two other methods of configuring the kernel, make menuconfig and 
make xconfig .  

The first time you run either of these configuration programs, they will 
actually be compiled before your very eyes (exciting eh?). menuconfig is just 
a text based menu where you select the parts of the kernel you want; xconfig 
is the same thing, just for X-Windows. Using either of these utilities will 
probably be useful for someone who has never compiled the kernel before, 
however, for a comprehensive step-by-step selection of kernel components, 
make config  is, in my view, better. You may be wondering what is the result 
of make config/menuconfig/xconfig ? What is actually happening is that 
small configuration files are being generated to be used in the next step of the 
process, make dep.  

Dependencies 

make dep  takes the results from make config and "sets up" which parts of the 
kernel have to be compiled and which don’t. Basically this step involves 
extensive use of sed and awk for string substitution on files. This process may 
take a few minutes; there is no user interaction at this point.  

After running make dep, make clean  must be run. Again, this process 
requires no user interaction. make clean actually goes through the source tree 
and removes all the old object and temporary files. This process can not be 
skipped.  

At this point, we are ready to start the compile process.  

Compilation 

You have two options at this point; you may either install the kernel on the 
hard drive of the system and hope it works, or, install the kernel on a floppy 
disk and test it for a while, then (if it is working) install it on the hard drive.  

ALWAYS tests your kernel on a floppy disk before installing it as your boot 
kernel on the hard drive. Why? Simply because if you install your new kernel 
directly over the one on the hard drive and it doesn’t work properly (i.e.. 
crashes or hangs your system) then you will have difficulty booting your 



85321, Systems Administration Chapter 13:  Kernel 

David Jones (20.01.00) Page 357 

system (being a well prepared Systems Administrator, you’d have a boot disk 
of course ... ;).  

To compile your new kernel to disk, you must issue the command:  

make zdisk 

This will install a bootable kernel on the disk in A:.  To boot the system, you 
simply insert the disk containing the kernel in A:, shut down the system, and 
let it reboot. The kernel on disk will load into memory, mount your root 
partition and the system will boot as normal. It is a good idea to run this kernel 
on disk for at least a few days, if not longer. If something goes wrong and you 
find your system has become unstable, it is merely a process of removing the 
disk, rebooting and the system will start up with your old kernel.  

If you are going to install the kernel directly to the hard disk, then you should 
issue the commands:  

make zImage 
make zlilo 

The first command, make zImage, actually compiles the kernel, the second, 
make zlilo  installs the kernel on whatever root partition you have configured 
with lilo.  

 

Most systems use lilo as the kernel boot loader. A common 
misconception is that lilo  is only used to boot kernels off hard 
disks. This is actually incorrect; if lilo is configured (usually 
done when you installed your system, see "man lilo"  for more 
information on configuring it) to boot the kernel from floppy 
disk, then running make zlilo  will cause a copy of the kernel 
(and lilo) to be copied onto a disk. However, lilo is usually 
used to load a kernel form hard disk. The way it works is 
simple; lilo  finds the absolute block/sector address of the 
kernel image on the disk. It then creates a small program 
(containing this and other information) and inserts it in the boot 
sector of the primary hard disk. At boot time, lilo is run, 
prompting (optionally) the user for the desired operating system 
to boot. When the choice is made, lilo goes directly to the 
block/sector of the kernel boot image (or other operating 
system boot file) and loads it into memory and executes it.   

The actual compile process (either using make zImage or make zdisk  is a 
lengthy process. A Pentium 100 with 16 megabytes of RAM takes around 15 
to 25 minutes to compile the kernel (depending on what has been included). 
Compiling DEC UNIX on a DEC-Alpha takes around three to four minutes. 
Have pity for those in the not-so-distant era of the 386 that waited all day for a 
kernel to recompile.  

It is quite OK to be recompiling the kernel while other users are 
logged onto the system; be aware that this will slow the process 
down and make the system appear VERY slow to the users 
(unless you have a "really, nice" machine).   



85321, Systems Administration Chapter 13:  Kernel 

David Jones (20.01.00) Page 358 

If you have decided to use dynamically loadable modules, there are two more 
commands you must issue:  

make modules 
make modules_install 

Note this is done post kernel compile - the useful thing about this is that if you 
upgrade your modules, you can simply recompile them without the need for a 
full kernel recompile!  

After the make zImage/zlilo/zdisk  commands and compiling the modules, 
your kernel is ready to be tested. As previously stated, it is important to test 
your kernel before using it as your system boot kernel.  

If you find that the kernel is working normally from disk and it hasn’t crashed 
the system (too much), then you can install the kernel to the hard disk.  The 
easiest way to do this is to go back to the /usr/src/linux  directory and type:  

make zlilo 

This will install the copy of the kernel that was previously compiled to disk (a 
copy is also kept in the kernel source directory) to the hard drive, or whatever 
boot device lilo  is configured to use.  

Common Problems 

Did you read the documentation? "If all else fails, read the documentation" - 
this quote is especially true of kernel recompiles. A few common problems 
that you may be confronted with are:  

• make can not find the Makefile  but it is there!:  
This is because make is broken. This was a big problem under the 1.2.n 
kernels when an updated libc.so.x  library was released. The problem 
was that make would not work under 1.3.n kernels that had been 
recompiled under the 1.2.n versions with the new library; consequently, 
you couldn’t recompile the kernel under the 1.3.n kernels due to the fact 
make was not working! This has been fixed since, though at the time the 
solution was to go and get a new version of make. This is a classic example 
of what can happen when you start upgrading kernels without upgrading all 
the libraries, compilers and utilities. Always read the README file before 
recompiling the kernel and make sure you have all the right versions of 
libraries, compilers and utilities.  

• make config/dep/clean dies:  
This is bad news. It means one of several things: either the config scripts 
can’t find /bin/bash  or /bin/sh , some of the source tree is missing, you 
are not running the program as root or there is something wrong with your 
system file permissions/links. It is very rare for this to happen with kernels 
"unpacked straight from the box". If it does happen, check for the previous 
reasons; if all else fails, go and get another kernel source.  

• make zImage/zdisk  fails:  
This is one of those sinking feeling moments when you start getting 
messages during the compile saying "Error: Something didn’t 



85321, Systems Administration Chapter 13:  Kernel 

David Jones (20.01.00) Page 359 

compile/link". Two primary reasons for this are: not running make clean 
after make dep  and not having the correct libraries installed.    

• The kernel compiles and boots but it is unstable:  
If you are using developmental kernels, this comes with the territory: 
because developmental kernels can be unstable. If, however, you are using 
a known "stable" kernel, then the reason is most likely a hardware conflict. 
Typical culprits are sound cards and network cards. Remove these from the 
kernel and recompile. You should then examine the documentation on the 
offending devices to see what the conflict is. Other reasons for kernel 
instability include compiling in support for devices you don’t have (this is 
rare but can happen) or the fact that you’ve just discovered a "real" bug in 
the kernel - in which case the README documentation will assist you in 
locating the right person to talk to.  

If you are still encountering problems, you should examine the newsgroup 
archives concerned with Linux. There are also several useful mailing lists and 
web sites that can assist you with kernel problems.  

Exercises 

13.5. Modify the kernel so that the maximum number of tasks it can run is 50. 
Compile this kernel to a floppy disk. See how long it takes to use all 
these processes up. 

13.6. Modify your kernel so that the kernel version message (seen on boot 
time) contains your name. Hint: /usr/src/linux/init  contains a file 
called version.c  - modify a data structure in this. 

13.7. Recompile your own kernel, including only the components you need. 
For those components that you need but don’t use very oftem, compile 
them in as modules. Initially boot the kernel from disk, then install it on 
your hard disk. 

Conclusions 
In this chapter we have examined:  

• What is a kernel? 

• Why would a Systems Administrator recompile a kernel? 

• What makes up a modern kernel? 

• How would you obtain a kernel? 

• Why and how would you modify the kernel source? 

• How is a kernel configured and recompiled? 

• Why should a kernel be tested? 

• How is a kernel installed? 

• Issues associated with the modern Linux kernel 



85321, Systems Administration Chapter 13:  Kernel 

David Jones (20.01.00) Page 360 

Further information of the Linux kernel can be obtained from the Linux Kernel 
HOWTO and the other resources mentioned at the beginning of this chapter.  

Review Questions 
13.1. 

Describe the functions of the kernel; explain the difference between a kernel 
that uses modules and one that doesn’t. 

13.2. 

You have added a D-Link ethernet card to your laptop (a D-Link  ethernet 
card  runs via the parallel port). Describe the steps you’d perform to allow the 
system to recognise it. Would you compile support for this module directly 
into the kernel or make it a module? Why/Why not? 

13.3. 

You wish to upgrade the kernel on an older system (ver 1.2.n) to the latest 
kernel. What issues should you consider? What problems could occur with 
such an upgrade; how would you deal with these? 

 



85321, Systems Administration Chapter 14: Automation and Observation 

David Jones (20.01.00)  Page 

Chapter 
Automation and Observation 

Introduction  
Setting up a machine is one part of Systems Administration.  Another 
somewhat more important part is keeping that machine going.  Central to 
achieving this aim are the two activities we look at in this chapter (there are 
more) 

1. Automation 
Any tasks which occurs more than once must be automated.  The primary 
tool on UNIX systems for achieving this are shell programs.  This chapter 
looks at the use of cron (the Linux scheduler) for automatically scheduling 
shell programs and other tasks. 

2. Observation 
People will do things to your computer.  Some of them will do nasty things. 
Observation is the act of keeping an eye on your machine so you know there 
is something wrong with it before the users complain about something not 
working. 
We look at observation from two perspectives: historical and current.  
Historical observation tells you what has happened on your system.  Current 
observation tells you what is happening now. 

Other  Resources 
Other resources which discuss similar topics include 

• LAME 
A section called Automatic tasks with Cron and Crontab files. 

• USAIL 
A section on automating tasks with Cron.  
http://www.uwsg.indiana.edu/usail/index/automate.html 

Automation and cron  

A number of the responsibilities of a System Administrator are automated 
tasks that must be carried out at the regular times every day, week or hour. 
Examples include, early every morning freeing up disk space by deleting 
entries in the /tmp directory, performing backups every night or compressing 
and archiving log files.  

Most of these responsibilities require no human interaction other than to start 
the command. Rather than have the Administrator start these jobs manually, 



85321, Systems Administration Chapter 14: Automation and Observation 

David Jones (20.01.00)  Page 

UNIX provides a mechanism that will automatically carry out certain tasks at 
set times.  This mechanism relies on the cron system. 

For example, the mirror of the Linux Documentation Project (LDP) on the 
85321 website is kept up to date with a cron job (a task scheduled with cron).  
This particular cron job, run every sunday night, connects to the central LDP 
site and transfers any updated data. 

Components of cron   

The cron system consists of the following three components 

• crontab (the cron configuration) files 
These are the files which tell the cron system which tasks to perform and 
when.  

• the crontab command 
This is the command used to modify the crontab files.  Even though the 
crontab files are text files they should not be edited using a text editor.  

• the daemon, crond 
The cron daemon is responsible for reading the crontab file and then 
performing the required tasks at the specified times.  The cron daemon is 
started by a system startup file.   

crontab  format  

crontab  files are text files with each line consisting of 6 fields separated by 
spaces. The first five fields specify when to carry out the command and the 
sixth field specifies the command. Table 14.1, on the following page, outlines 
the purpose of each of the fields.  

Field Purpose 

minute minute of the hour, 00 to 59  

hour hour of the day, 00 to 32 (military time)  

day day of the month, 1 to 31  

month month of the year, 1 to 12  

weekday day of the week, Linux uses three letter abbreviations, sun, mon, tue,....  

command The actual command to execute  

T a b l e  1 4 . 1  
c r o n t a b  f i e l d s   

Comments can be used and are indicated using the # symbol just as with shell 
programs. Anything that appears after a # symbol until the end of that line is 
considered a comment and is ignored by crond.  

The five time fields can also use any one of the following formats 

• an asterix that matches all possible values,  

• a single integer that matches that exact value,  



85321, Systems Administration Chapter 14: Automation and Observation 

David Jones (20.01.00)  Page 

• a list of integers separated by commas (no spaces) used to match any one 
of the values  

• two integers separated by a dash (a range) used to match any value within 
the range.  

For example  

Some example crontab entries include (all but the first two examples are 
taken from the Linux man page for crontab)  

0 * * * * echo Cuckoo Cuckoo > /dev/console 2>&1 

Every hour (when minutes=0) display Cuckoo Cuckoo on the system console.  

30 9-17 * 1 sun,wed,sat echo ‘date‘ >> /date.file 2>&1 

At half past the hour, between 9 and 5, for every day of January which is a 
Sunday, Wednesday or Saturday, append the date to the file date.file  

0 */2 * * * date 

Every two hours at the top of the hour run the date command  

0 23-7/2,8 * * * date 

Every two hours from 11p.m. to 7a.m., and at 8a.m.  

0 11 4 * mon-wed date 

At 11:00 a.m. on the 4th and on every mon, tue, wed  

0 4 1 jan * date 

4:00 a.m. on january 1st  

0 4 1 jan * date >> /var/log/messages 2>&1 

Once an hour, all output appended to log file  

Output  

When commands are executed by the crond daemon there is no terminal 
associated with the process.  This means that standard output and standard 
error, which are usually set the terminal, must be redirected somewhere else.  
In this case the output is emailed to the person who’s crontab file the 
command appears.  It is possible to use I/O redirection to redirect the output of 
the commands to files.  Some of the examples above use output redirection to 
send the output of the commands to a log file.  

Exercises 

14.1. Write crontab entries for the following.  
- run the program date every minute of every day and send the output 
to a file called date.log   
- remove all the contents of the directory /tmp at 5:00am every morning  
- execute a shell script /root/weekly.job  every Wednesday  
- run the program /root/summary  at 3, 6 and 9 pm for the first five 
days of a month  



85321, Systems Administration Chapter 14: Automation and Observation 

David Jones (20.01.00)  Page 

Creating crontab  files  

crontab  files should not be modified using an editor instead they should be 
created and modified using the crontab command. Refer for the manual page 
for crontab  for more information but the following are two of the basic 
methods for using the command.  

1. crontab [file]  

2. crontab [-e | -r | -l ] [username]   

Version 1 is used to replace an existing crontab file with the contents of 
standard input or the specified file.  

Version 2 makes use of one of the following command line options  

• -e  
Allows the user to edit the crontab file using an editor (the command will 
perform some additional actions to make it safe to do so)  

• -r  
Remove the user’s crontab file  

• -l  
Display the user’s crontab file onto standard output  

By default all actions are carried out on the user’s own crontab file. Only the 
root user can specify another username and modify that user’s crontab file.  

Exercise 

14.2. Using the crontab  command to add the following to your crontab file 
and observe what happens.  
run the program date every minute of every day and send the output to 
a file called date.log   

Current Observation 
A part of the day to day operation of a system is keeping an eye on the systems 
current state. This section introduces a number of commands and tools that can 
be used to examine the current state of the system.  

The tools are divided into two sections based on what they observe. The 
sections are  

• disk and file system observation, and 
The commands du and df  

• process observation and manipulation. 
The commands ps, kill , nice  and top.  



85321, Systems Administration Chapter 14: Automation and Observation 

David Jones (20.01.00)  Page 

df   

df  summarises that amount of free disk space. By default df will display the 
following information for all mounted file systems  

• total number of disk blocks,  

• number of disk blocks used,  

• number available  

• percentage of disk blocks used, and  

• where the file system is mounted.  

df  also has an option, -i to display Inode usage rather than disk block usage. 
What an Inode is will be explained in a later chapter. Simply every file that is 
created must have an Inode. If all the Inodes are used you can’t create anymore 
files. Even if you have disk space available.  

The -T option will cause df to display each file systems type.  

Exercise 

14.3. Use the df command to answer the following questions  
- how many partitions do you have mounted  
- how much disk space do you have left on your Linux partition  
- how many more files can you create on your Linux partition  

du  

The du command is used to discover the amount of disk space used by file or 
directory. By default du reports file size as a number of 1 kilobyte blocks. 
There are options to modify the command so it reports size in bytes (-b ) or 
kilobytes (-k ).  

If you use du on a directory it will report back the size of each file and 
directory within it and recursively descend down any sub-directories. The -s 
switch is used to produce the total amount of disk used by the contents of a 
directory.  

There are other options that allow you to modify the operation of du with 
respect to partitions and links.  

Exercise 

14.4. Use the du command to answer the following questions  
- how many blocks does the /etc/passwd file use,  
- how large (in bytes) is the /etc/passwd file,  
- how disk space is used by the /etc/ directory, the usr directory  



85321, Systems Administration Chapter 14: Automation and Observation 

David Jones (20.01.00)  Page 

System Status  

Table 14.2 summarises some of the commands that can be used to examine the 
current state of your machine. Some of the information they display includes  

• amount of free and used memory,  

• the amount of time the system has been up,  

• the load average of the system, 
Load average is the number processes ready to be run and is used to give 
some idea of how busy your system is.  

• the number of processes and amount of resources they are consuming.  

Some of the commands are explained below. For those that aren’t use your 
system’s manual pages to discover more.  

 

Command Purpose 

free display the amount of free and used memory  

uptime how long has the system been running and what is the current load 
average  

Ps/pstree  one off snap shot of the current processes  

top continual listing of current processes  

uname display system information including the hostname, operating system 
and version and current date and time  

gtop The Gnome system monitor, a GUI which provides a view of running 
processes, memory and file system usage (see chapter 5) 

T a b l e  1 4 . 2  
S y s t e m  s t a t u s  c o m m a n d s   

ps   

The ps command displays a list of information about the process that were 
running at the time the ps command was executed.  

ps  has a number of options that modify what information it displays. Table 
14.3 lists some of the more useful or interesting options that the Linux version 
of PS supports.  

Table 14.4 explains the headings used by ps for the columns it produces.  

For more information on the ps command you should refer to the manual page.  



85321, Systems Administration Chapter 14: Automation and Observation 

David Jones (20.01.00)  Page 

 

Option Purpose  

l long format  

u displays username (rather than uid) and the start time of the process  

m display process memory info  

a display processes owned by other users (by default ps only shows your 
processes)  

x shows processes that aren’t controlled by a terminal  

f use a tree format to show parent/child relationships between processes  

w don’t truncate lines to fit on screen  

T a b l e  1 4 . 3  
p s  o p t i o n s   

 

Field  Purpose  

NI   the nice value  

SIZE   memory size of the processes code, data and stack  

RSS  kilobytes of the program in memory (the resident set size)  

STAT  the status of the process (R-runnable, S-sleeping, D-uninterruptable sleep, 
T-stopped, Z-zombie)  

TTY  the controlling terminal  

T a b l e  1 4 . 4  
p s  f i e l d s   

Exercise 

14.5. Use the ps command to answer the following questions  
- how many processes do you currently own  
- how many processes are running on your system  
- how much RAM does the ps command use  
- what’s the current running process  

top  

ps  provides a one-off snap shot of the processes on your system. For an on-
going look at the processes Linux generally comes with the top command. It 
also displays a collection of other information about the state of your system 
including  

• uptime, the amount of time the system has been up  

• the load average,  

• the total number of processes,  

• percentage of CPU time in user and system mode,  



85321, Systems Administration Chapter 14: Automation and Observation 

David Jones (20.01.00)  Page 

• memory usage statistics  

• statistics on swap memory usage  

Refer to the man page for top for more information.  

top  is not a standard UNIX command however it is generally portable and 
available for most platforms.  

top  displays the process on your system ranked in order from the most CPU 
intensive down and updates that display at regular intervals. It also provides an 
interface by which you can manipulate the nice value and send processes 
signals. 

The nice value  

The nice value specifies how "nice" your process is being to the other users of 
the system. It provides the system with some indication of how important the 
process is. The lower the nice value the higher the priority. Under Linux the 
nice value ranges from -20 to 19.  

By default a new process inherits the nice value of its parent. The owner of the 
process can increase the nice value but cannot lower it (give it a higher 
priority). The root account has complete freedom in setting the nice value.  

nice  

The nice  command is used to set the nice value of a process when it first 
starts.  

renice  

The renice  command is used to change the nice value of a process once it has 
started. 

Signals  

When you hit the CTRL-C combination to stop the execution of a process a 
signal (the TERM signal) is sent to the process. By default many processes will 
terminate when they receive this signal  

The UNIX operating system generates a number of different signals. Each 
signal has an associated unique identifying number and a symbolic name. 
Table 14.6 lists some of the more useful signals used by the Linux operating 
system. There are 32 in total and they are listed in the file 
/usr/include/linux/signal.h   

Chapter 5 has some additional discussion about signals. 

SIGHUP  

The SIGHUP signal is often used when reconfiguring a daemon. Most daemons 
will only read the configuration file when they startup. If you modify the 
configuration file for the daemon you have to force it to re-read the file. One 
method is to send the daemon the SIGHUP signal.  



85321, Systems Administration Chapter 14: Automation and Observation 

David Jones (20.01.00)  Page 

SIGKILL   

This is the big "don’t argue" signal. Almost all processes when receiving this 
signal will terminate. It is possible for some processes to ignore this signal but 
only after getting themselves into serious problems. The only way to get rid of 
these processes is to reboot the system.  

 

Symbolic Name Numeric identifier  Purpose 

SIGHUP 1 hangup 

SIGKILL 9 the kill signal 

SIGTERM 15 software termination 

T a b l e  1 4 . 5  
L i n u x  s i g n a l s   

kill  

The kill  command is used to send signals to processes. The format of the 
kill  command is  

kill [- signal] pid 

This will send the signal specified by the number signal to the process 
identified with process identifier pid. The kill command will handle a list of 
process identifiers and signals specified using either their symbolic or numeric 
formats.  

By default kill sends signal number 15 (the TERM signal).  

Histor ical Observation 
There will be times when you want to reconstruct what happened in the lead up 
to a problem. Situations where this might be desirable include  

• you believe someone has broken into your system,  

• one of the users performed an illegal action while online, and  

• the machine crashed mysteriously at some odd time.  

• You want to track how much a particular system or resource is used, e.g. a 
Web server.  This can also be useful in justifying to management the need 
for additional resources. 

This is where  

• logging, and  
The recording of certain events, errors, emergencies.  

• accounting. 
Recording who did what and when.  

become useful.  



85321, Systems Administration Chapter 14: Automation and Observation 

David Jones (20.01.00)  Page 

This section examines the methods under Linux by which logging and 
accounting are performed. In particular it will examine  

• the syslog  system,  

• process accounting, and  

• login accounting.  

Managing log and accounting files  

Both logging and accounting tend to generate a great deal of information 
especially on a busy system. One of the decisions the Systems Administrator 
must make is what to do with these files. Options include  

• don’t create them in the first place, 
The head in the sand approach. Not a good idea.  

• keep them for a few days, then delete them, and 
If a problem hasn’t been identified within a few days then assume there is 
no reasons to keep the log files. Therefore delete the existing ones and start 
from scratch.  

• keep them for a set time and then archive them. 
Archiving these files might include compressing them and storing them 
online or copying them to tape.  

logrotate 

Linux systems come with a command called logrotate.  As the name suggests 
this command is used to aid in the management of log files.  logrotate 
allows the automatic rotation, compression, removal and mailing of log files 
on a daily, weekly, monthly or size basis.  On Redhat Linux the logrotate 
command is configured with the file /etc/logrotate.conf. 

Centralise  

If you are managing multiple computers it is advisable to centralise the logging 
and accounting files so that they all appear on the one machine. This makes 
maintaining and observing the files easier.  The syslog system (discussed 
below) provides this ability. 

Security 

Since log files are your record of what has occured it is important that they are 
stored securely.  This is another reason for keeping the log files for computers 
on a single, very secure system.  One of the first things someone breaking into 
your system will attempt to do is to modify the log files so that their actions 
don’t appear. 

Keeping log files safe is especially important as in some situations they may be 
required as legal evidence.  



85321, Systems Administration Chapter 14: Automation and Observation 

David Jones (20.01.00)  Page 

Look at them 

Late in 1999 the disk drives in the computer which acts as the Web server for a 
certain faculty at a certain University failed.  It appears the RAID controller for 
the disk had detected and started logging errors with the disk about five 
months earlier.  The problem was that no-one was reading the log file.  It is 
important that log files actually be read. 

Logging  
The ability to log error messages or the actions carried out by a program or 
script is fairly standard. On earlier versions of UNIX each individual program 
would have its own configuration file that controlled where and what to log. 
This led to multiple configuration and log files that made it difficult for the 
Systems Administrator to control and each program had to know how to log.  

syslog   

The syslog  system was devised to provide a central logging facility that could 
be used by all programs. This was useful because Systems Administrators 
could control where and what should be logged by modifying a single 
configuration file and because it provided a standard mechanism by which 
programs could log information.  

Components of syslog   

The syslog  system can be divided into a number of components  

• default log file, 
On many systems messages are logged by default into the file 
/var/log/messages   

• the syslog  message format, 

• the application programmer’s interface, 
The API programs use to log information.  

• the daemon, and 
The program that directs logging information to the correct location based 
on the configuration file.  

• the configuration file. 
Controls what information is logged and where it is logged.  

Exercise 

14.6. Examine the contents of the file /var/log/messages . You will 
probably have to be the root user to do so. One useful piece of 
information you should find in that file is a copy of the text that appears 
as Linux boots. 



85321, Systems Administration Chapter 14: Automation and Observation 

David Jones (20.01.00)  Page 

syslog  message format  

syslog  uses a standard message format for all information that is logged. This 
format includes  

• a facility, 
The facility is used to describe the part of the system that is generating the 
message. Table 14.3 lists some of the common facilities.  

• a level, 
The level indicates the severity of the message. In lowest to highest order 
the levels are debug info notice warning err crit alert emerg   

• and a string of characters containing a message.  

 

Facility Source 

kern   the kernel  

mail   the mail system  

lpr   the print system  

daemon  a variety of system daemons  

auth   the login authentication system  

T a b l e  1 4 . 6  
C o m m o n  s y s l o g  f a c i l i t i e s   

syslog ’s API  

In order for syslog  to be useful application programs must be able to pass 
messages to the syslog daemon so it can log the messages according to the 
configuration file..  There are at least two methods which application programs 
can use to send messages to syslog.  These are: 

Z

logger ,  
logger is a UNIX command.  It is designed to be used by shell programs 
which wish to use the syslog facility.  

[ the syslog API. 
The API (application program interface) consists of a set of the functions 
(openlog syslog closelog ) which are used by programs written in 
compiled languages such as C and C++.  This API is defined in the 
syslog.h  file.  You will find this file in the system include directory 
/usr/include. 

Exercises 

14.7. Examine the manual page for logger. Use logger  from the command 
line to send a message to syslog  

14.8. Examine the manual page for openlog and write a C program to send a 
message to syslog  



85321, Systems Administration Chapter 14: Automation and Observation 

David Jones (20.01.00)  Page 

syslogd   

syslogd  is the syslog  daemon. It is started when the system boots by one of 
the startup scripts. syslogd reads its configuration file when it startups or 
when it receives the HUP signal. The standard configuration file is 
/etc/syslog.conf .  

syslogd  receives logging messages and carries out actions as specified in the 
configuration file. Standard actions include  

• appending the message to a specific file,  

• forwarding the message to the syslogd on a different machine, or  

• display the message on the consoles of all or some of the logged in users.  

/etc/syslog.conf   

By default syslogd  uses the file /etc/syslog.conf  as its configuration file. 
It is possible using a command line parameter of syslogd to use another 
configuration file.  

A syslog  configuration file is a text file. Each line is divided into two fields 
separated by one or more spaces or tab characters  

• a selector, and 
Used to match log messages.  

• an action. 
Specifies what to do with a message if it is matched by the selector  

The selector  

The selector format is facility.level  where facility  and level level  
match those terms introduced in the syslog message format section from 
above.  

A selector field can include  

• multiple selectors separated by ; characters  

• multiple facilities, separated by a , character, for a single level  

• an * character to match all facilities or levels  

The level can be specified with or without a =. If the = is used only messages at 
exactly that level will be matched. Without the = all messages at or above the 
specified level will be matched.  

syslog.conf  actions  

The actions in the syslog configuration file can take one of four formats  

• a pathname starting with / 
Messages are appended onto the end of the file.  

• a hostname starting with a @ 
Messages are forwarded to the syslogd on that machine.  



85321, Systems Administration Chapter 14: Automation and Observation 

David Jones (20.01.00)  Page 

• a list of users separated by commas 
Messages appear on the screens of those users if they are logged in.  

• an asterix 
Messages are displayed on the screens of all logged in users.  

For example  

The following is an example syslog configuration file taken from the Linux 
manual page for syslog.conf   

# Log all kernel messages to the console. 
# Logging much else clutters up the screen. 
#kern.*                         /dev/console 
 
# Log anything (except mail) of level info or higher. 
# Don’t log private authentication messages! 
*.info;mail.none;authpriv.none              /var/log/messages 
 
# The authpriv file has restricted access. 
authpriv.*                      /var/log/secure 
 
# Log all the mail messages in one place. 
mail.*                          /var/log/maillog 
 
# Everybody gets emergency messages, plus log them on another 
# machine. 
*.emerg                         * 
 
# Save mail and news errors of level err and higher in a 
# special file. 
uucp,news.crit                      /var/log/spooler 

Exercise 

14.9. A common problem on many systems are users who consume too much 
disk space.  One method to deal with this is to have a script which 
regularly checks on disk usage by users and reports those users who are 
consuming too much.  The following is one example of a script to do 
this. 
 
#!/bin/bash 
 
# global constant 
# DISKHOGFILE holds the location of the file defining each users  
# maximum disk space 
DISKHOGFILE="disk.hog" 
# OFFENDERFILE specifiesl where to write information about offending 
# users 
OFFENDERFILE="offender" 
 
space_used() 
  # accept a username as 1st parameter 
  # return amount of disk space used by the users home directory 
  # in a variable usage 
{ 
  # home directory is the sixth field in /etc/passwd 
  the_home=‘grep ^$1: /etc/passwd | cut -d: -f6‘ 
  # du uses a tab character to seperate out its fields 
  # we’re only interested in the first one 



85321, Systems Administration Chapter 14: Automation and Observation 

David Jones (20.01.00)  Page 

  usage=‘du -s $the_home | cut -f1‘ 
} 
 
# 
# Main Program 
# 
 
while read username max_space 
do 
  space_used $username 
  if [ $usage -gt $max_space ] 
  then 
    echo $username has a limit of $max_space and has used $used  $OFFENDERFILE 
  fi 
done < $DISKHOGFILE 
 

Modify this script so that it uses the syslog system rather than 
displaying its output onto standard output.  

14.10. Configure syslog so the messages from the script in the previous 
question are appended to the logfile /var/log/disk.hog.messages  
and also to the main system console. 

Accounting  
Accounting was developed when computers were expensive resources and 
people were charged per command or CPU time. In today’s era of cheap, 
powerful computers its rarely used for these purposes. One thing accounting is 
used for is as a source of records about the use of the system. Particular useful 
if someone is trying, or has, broken into your system.  

In this section we will examine  

• login accounting.  
Keeping a track of who has logged into the system and how long they were 
logged in. 

• process accounting 

Login accounting  

The file /var/log/wtmp  is used to store the username, terminal port, login and 
logout times of every connection to a Linux machine. Every time you login or 
logout the wtmp file is updated.  This task is performed by init. 

last   

The last  command is used to view the contents of the wtmp file. There are 
options to limit interest to a particular user or terminal port.  

Exercise 

14.11. Use the last  command to  
- count how many logins there have been since the current wtmp file was 
created,  
- how many times has the root user logged in  



85321, Systems Administration Chapter 14: Automation and Observation 

David Jones (20.01.00)  Page 

ac   

The last command provides rather rudimentary summary of the information in 
the wtmp file.  As a Systems Administrator it is possible that you may require 
more detailed summaries of this information.  For example, you may desire to 
know the total number of hours each user has been logged in, how long per day 
and various other information. 

The command that provides this information is the ac command. 

Installing ac   

It is possible (even likely) that you will not have the ac command installed.  
The ac command is part of the psacct package.  You may have to install it.  
Refer to the RedHat guides for information on how to do this.. 

14.12. Use the ac command to  
- find the total number of hours you were logged in as the root user  
- find the average number of hours per login for all users  
- find the daily totals for root 

Process accounting  

Also known as CPU accounting, process accounting records the elapsed CPU 
time, average memory use, I/O summary, the name of the user who ran the 
process, the command name and the time each process finished.  You may also 
need to install process accounting. 

Turning process accounting on 

Process accounting does not occur until it is turned on using the accton 
command. 

accton /var/log/acct 

Where /var/log/acct  is the file in which the process accounting information 
will be stored. The file must already exist before it will work.  You can use any 
filename you wish but many of the accounting utilities rely on you using this 
file. 

lastcomm   

lastcomm  is used to display the list of commands executed either for everyone, 
for particular users, from particular terminals or just information about a 
particular command. Refer to the lastcomm manual page for more information.  

[root@beldin /proc]# lastcomm david 
netscape               david    tty1       0.02 secs Sun Jan 25 16:26 
[root@beldin /proc]# lastcomm ttyp2 
lastcomm               root     ttyp2      0.55 secs Sun Jan 25 16:21 
ls                     root     ttyp2      0.03 secs Sun Jan 25 16:21 
ls                     root     ttyp2      0.02 secs Sun Jan 25 16:21 
accton                 root     ttyp2      0.01 secs Sun Jan 25 16:21 



85321, Systems Administration Chapter 14: Automation and Observation 

David Jones (20.01.00)  Page 

The sa command 

The sa command is used to provide more detailed summaries of the 
information stored by process accounting and also to summarise the 
information into other files. 

[root@beldin /proc]# /usr/sbin/sa -a  
      66       0.19re       0.25cp 
       6       0.01re       0.16cp   cat 
       8       0.00re       0.04cp   lastcomm 
      17       0.00re       0.01cp   ls 
       6       0.01re       0.01cp   man 
       1       0.00re       0.01cp   troff 
       5       0.01re       0.01cp   less 
       1       0.15re       0.01cp   in.ftpd 
       6       0.01re       0.01cp   sh 
       5       0.00re       0.00cp   gunzip 
       1       0.00re       0.00cp   grotty 
       2       0.00re       0.00cp   sa 
       1       0.00re       0.00cp   groff 
       1       0.00re       0.00cp   gtbl 
       1       0.00re       0.00cp   gzip 
       1       0.00re       0.00cp   sh* 
       1       0.00re       0.00cp   netscape* 
       1       0.00re       0.00cp   accton 
       2       0.00re       0.00cp   bash* 

Refer to the manual pages for the sa command for more information. 

So what? 

This section has given a very brief overview of process and login accounting 
and the associated commands and files.  What use do these systems fulfil for a 
Systems Administrator?  The main one is that they allow you to track what is 
occurring on your system and who is doing it.  This can be useful for a number 
of reasons 

• tracking which user’s are abusing the system 

• figuring out what is normal for a user 
If you know that most of your users never use commands like sendmail and 
the C compilers (via process accounting) and then all of a sudden they start 
using this might be an indication of a break in. 

• justifying to management the need for a larger system 
Generally management won’t buy you a bigger computer just because you 
want one.  In most situations you will have to put together a case to justify 
why the additional expenditure is necessary.  Process and login account 
could provide some of the necessary information. 



85321, Systems Administration Chapter 14: Automation and Observation 

David Jones (20.01.00)  Page 

Conclusions  
The cron  system is used to automatically perform tasks at set times. 
Components of the cron system include  

• the daemon, crond, 
Which actually performs the specified tasks.  

• crontab  files, and 
That specify the when and what.  

• the crontab  command. 
Used to manipulate the crontab files.  

Useful commands for examining the current status of your systems file system 
include df and du. Commands for examining and manipulating processes 
include ps, kill , renice , nice  and top. Other "status" commands include 
free , uptime  and uname.  

syslog  is a centralised system for logging information about system events. 
It’s components include  

• an API and a program (logger ) by which information can be logged,  

• the syslogd  daemon that actually performs the logging, and  

• the /etc/syslog.conf  that specifies what and where logging information 
should be logged.  

Login accounting is used to track when, where and for how long users connect 
to your system. Process accounting is used to track when and what commands 
were executed. By default Linux does not provide full support for either form 
of accounting (it does offer some standard login accounting but not the extra 
command sac). However there are freely available software distributions that 
provide Linux this functionality.  

Login accounting is performed in the /var/log/wtmp  file that is used to store 
the details of every login and logout from the system. The last command can 
be used to view the contents of the binary /var/log/wtmp file. The non-
standard command sac can be used to summarise this information into a 
number of useful formats.  

Process accounting must be turned on using the accton command and the 
results can be viewed using the lastcomm command.  

Both logging and accounting can produce files that grow to some considerable 
size in a short amount of time. The Systems Adminstrator must implement 
strategies to deal with these log files. Either by ignoring and deleting them or 
by saving them to tape.  



85321, Systems Administration Chapter 14: Automation and Observation 

David Jones (20.01.00)  Page 

Review Questions 
14.1  

Explain the relationship between each of the following  

• crond , crontab  files and the crontab  command,  

• syslogd , logger  and /etc/syslog.conf   

• /var/adm/wtmp , last  and sac  

14.2  

You have just modified the /etc/syslog.conf  file. Will your changes take 
effect immediately? If not what command would you use to make the 
modifications take effect? How could you check that the modifications are 
working?  

14.3  

Write crontab entries to achieve the following 

• run the script /usr/local/adm/bin/archiveIt every Monday at 6 
am 

• run a script /usr/local/adm/bin/diskhog  on Monday, Wednesday and 
Friday at 6am, 12pm, 4pm 

14.4 

You are a script kiddie (a deogatory name for someone who breaks into 
computers using very simplistic and automated approaches) who has just 
broken into my Linux computer.  You need to answer the following 

• How do you find what form of logging and accounting I have installed? 

• What can you do to cover the fact that you have broken into my system? 

 

 



85321, Systems Administration Chapter 15, Networks: The Connection 

David Jones (20.01.00) Page 380 

Chapter 
Networks: The Connection 

 

Introduction 
Connecting computers to networks and managing those networks are probably 
the most important, or at least the most hyped, areas of computing at the 
moment.  This and the following chapter introduce the general concepts 
associated with TCP/IP-based networks and in particular the knowledge 
required to connect and use Linux computers to those networks. 

This chapter examines how you connect a Linux machine and configure it to 
provide basic network connections and services for other machines.  Higher 
level network applications, such as file sharing and Web servers, and how they 
work and what you can do with them is the topic for the following chapter. 

This chapter 

• Overview 
Provides an overview of connecting a Linux machine to a network. 

• TCP/IP Basics 
A brief introduction to the fundamentals of TCP/IP networking. 

• Hardare 
Quick coverage of the hardware which can be used to networking 

• Kernel support 

• Network configuration 

Other  Resources 
As you might expect there is a large amount of information about creating and 
maintaining TCP/IP networks on the Internet.  The following is a small list of 
some of that material 

• HOWTOs 
Linux Networking-HOWTO which describes how to install and configure 
the Linux networking software and associated tools.  Linux Networking 
Overview HOWTO provides an overview of the networking capabilities of 
Linux and provides pointers to further information. Multicast over TCP/IP 
HOWTO,  DNS HOWTO covers the configuration of the Domain Name 
Service on Linux, Ethernet HOWTO, IPX HOWTO covers the installation 
on  Linux of the network protocol used by Novell, IP Masquerade 
HOWTO, ISP Hookup HOWTO, PLIP Install HOWTO covers how to 
connect Linux boxes using null parallel cables, PPP HOWTO, Asymmetric 
Digital Subscriber Loop mini-HOWTO, Bridge mini-HOWTO, 



85321, Systems Administration Chapter 15, Networks: The Connection 

David Jones (20.01.00) Page 381 

Bridge+Firewall mini-HOWTO, Cipe+Masquerading mini-HOWTO, IP 
Alias mini-HOWTO, IP Subnetworking mini-HOWTO, Leased Line mini-
HOWTO, Token Ring mini-HOWTO, VPN mini-HOWTO, Linux Modem 
Sharing mini-HOWTO 

• LDP Guides 
The Linux Installation and Getting Started Guide’s Chapter 6 covers 
networking.  The major one is the Linux Network Administrators Guide.  It 
is a touch old (March 1996) but it was actually published by O'Rielly and 
Associates (http://www.ora.com/) but is also freely available as part of the 
Linux Documentation Project.   

•  Linux network project 
Development on the Linux networking code is an on-going project.  The 
project leader maintains a Web site which contains information about the 
current developments.  It's located at 
http://www.uk.linux.org/NetNews.html 

• comp.os.linux.networking 
A newsgroup specifically for discussions about Linux networking. 

• TCP/IP introduction and administration,  
 Documents produced by Rutgers University.  Available from 
ftp://athos.rutgers.edu/runet/   with the filenames tcp-ip-intro  
and tcp-ip-admin  as either Word documents or postscript files.  Should 
also be present on the 85321 website/CD-ROM 

•  RFC Database   
RFCs (Request for comments) are the standards documents  for the 
Internet.  A Web-based interface to the collection of RFCs is available 
from http://pubweb.nexor.co.uk/public/rfc/index/rfc.html  

• Linux for an ISP  
A number of Internet Service Providers from throughout the world use 
Linux servers.  There is a Web page which maintains a list of of links of 
interest to these folk.  It is available at 
http://www.anime.net/linuxisp/   Some of the links are dated. 

The Overview 
This chapter introduces the process and knowledge for connecting a Linux 
machine to a TCP/IP network.  There are many other types of networking 
protocols but TCP/IP is the protocol family on the Internet so that is the one 
we concentrate on. 

Creating a TCP/IP network does not necessarily mean you are connected to the 
Internet.  You can have a TCP/IP network between the two computers you 
have at home. 

What you need 

In order to create some sort of TCP/IP network using Linux you will need the 
following 



85321, Systems Administration Chapter 15, Networks: The Connection 

David Jones (20.01.00) Page 382 

• Networking hardware 
You will need to make some sort of connection between the machines on 
your network so they can communicate.  Linux supports a wide range of 
networking hardware.  You can only use networking hardware Linux 
supports (unless you want to start writing device drivers). 

• Appropriately configured kernel 
To use your network hardware the kernel must contain the appropriate 
device driver or have access to an appropriate module.  The kernel also 
requires a number of other components which provide necessary low-level 
support for networking.  If you are using some sort of strange hardware 
you may need to recompile the kernel to include support for your hardware. 

• Network configuration tools 
These should be already present on most Linux systems and are used to 
configure networking. 

• Network applications 
These are the topic of the next chapter and again most are supplied with the 
common Linux distributions.  These provide the higher level services such 
as email, Web and file sharing. 

• Network information 
This information is necessary to configure your system on the network.  It 
includes your machine’s IP address, the network address, the broadcast and 
netmask addresses, the router address and the address of your DNS server. 

What you do 

To install your Linux box onto a network you move on up the layers with steps 
something like the following 

• Obtain the appropriate hardware 

• Connect it to your system  

• Configure your kernel to recognise the hardware 

• Configure the network software 

• Test the connection 

TCP/IP Basics 
Before going any further it is necessary to introduce some of the basic 
concepts related to TCP/IP networks.  An understanding of these concepts is 
essential for the the next steps in connecting a Linux machine to a network.  If 
you find the following too confusing or disjointed please refer to some of the 
other resources mentioned at the start of this chapter. The concepts introduced 
in the following includes 

• hostnames 
Every machine (also known as a host) on the Internet has a name.  This 
section introduces hostnames and related concepts. 



85321, Systems Administration Chapter 15, Networks: The Connection 

David Jones (20.01.00) Page 383 

• IP addresses 
Each network interface on the network also has a unique IP address.  This 
section discusses IP addresses, the components of an IP address, subnets, 
network classes and other related issues. 

• Name resolution 
Human beings use hostnames while the IP protocols use IP addresses.  
There must be a wy, name resolution, to convert hostnames into IP 
addresses.  This section looks at how this is achieved. 

• Routing 
When network packets travel from your computer to a Web site in the 
United States there are normally a multitude of different paths that packet 
can take.  The decisions about which path it takes are performed by a 
routing algorithm.  This section briefly discusses how routing occurs. 

Hostnames 

Most computers on a TCP/IP network are given a name, usually known as a 
host name (a computer can be known as a host).  The hostname is usually a 
simple name used to uniquely identify a computer within a given site.  A fully 
qualified Internet host name, also known as a fully qualified domain name 
(FQDNFQDN), uses the following format  

hostname.site.domain.country  

• hostname 
A name by which the computer is known. This name must be unique to the 
site on which the machine is located.  

• site 
A short name given to the site (company, University, government 
department etc) on which the machine resides.  

• domain 
Each site belongs to a specific domain. A domain is used to group sites of 
similar purpose together. Table 15.? provides an example of some domain 
names. Strictly speaking a domain name also includes the country.    

• country 
Specifies the actual country in which the machine resides. Table 15.? 
provides an example of some country names.  You can see a list of the 
country codes at http://www.bcpl.net/~jspath/isocodes.html 

For example the CQU machine jasper’s fully qualified name is 
jasper.cqu.edu.au, where jasper is the hostname, cqu is the site 
name, the domain is edu and the country is au.  



85321, Systems Administration Chapter 15, Networks: The Connection 

David Jones (20.01.00) Page 384 

 

Domain Purpose 

edu Educational institution, university or school  

com Commercial company  

gov Government department  

net Networking companies  

T a b l e  1 5 . 1  
E x a m p l e  I n t e r n e t  d o m a i n s   

 

Country code Country 

nothing or us  United States  

au Australia  

uk United Kingdom  

In India  

Ca Canada  

Fr France  

T a b l e  1 5 . 2  
E x a m p l e  C o u n t r y  C o d e s   

hostname  

Under Linux the hostname of a machine is set using the hostname command. 
Only the root user can set the hostname. Any other user can use the 
hostname command to view the machine’s current name.  

root@faile david]# hostname  
faile.cqu.edu.au 
[root@faile david]# hostname fred  
[root@faile david]# hostname  
fred 

Changes to the hostname performed using the hostname command will not 
apply after you reboot a RedHat Linux computer.  RedHat Linux sets the 
hostname during startup from one of its configuration files, 
/etc/sysconfig/network  This is the file which is changed by the GUI tools 
provided with RedHat.  If you wish a change in hostname to be retained after 
you reboot you will have to change this file. 

Qualified names  

jasper.cqu.edu.au is a fully qualified domain name and uniquely 
identifies the machine jasper on the CQU campus to the entire Internet. 
There cannot be another machine called jasper at CQU. However there 
could be another machine called jasper at James Cook University in 
Townsville (its fully qualified name would be jasper.jcu.edu.au).  



85321, Systems Administration Chapter 15, Networks: The Connection 

David Jones (20.01.00) Page 385 

A fully qualified name must be unique to the entire Internet. Which implies 
every hostname on a site should be unique.  

Not qualified  

It is not always necessary to specify a fully qualified name. If a user on 
aldur.cqu.edu.au enters the command telnet jasper the 
networking software assumes that because it isn’t fully qualified hostname the 
user means the machine jasper on the current site (cqu.edu.au). 

IP/Internet Addresses 

Alpha-numeric names, like hostnames, cannot be handled efficiently by 
computers, at least not as efficiently as numbers.  For this reason, hostnames 
are only used for us humans.  The computers and other equipment involved in 
TCP/IP networks use numbers to identify hosts on the Internet.  These 
numbers are called IP addresses.  This is because it is the Internet Protocol (IP) 
which provides the addressing scheme.  

IP addresses are currently 32 bit numbers, IPv6 the next generation of IP uses 
128 bit address.  IP addresses are usually written as four numbers separated by 
full stops (called dotted decimal form) e.g. 132.22.42.1.  Since IP 
addresses are 32 bit numbers, each of the numbers in the dotted decimal form 
are restricted to between 0-255 (32 bits divide by 4 numbers gives 8 bits per 
number and 255 is the biggest number you can represent using 8 bits).  This 
means that 257.33.33.22 is an invalid address.  

Dotted Quad to Binary 

The address 132.22.42.1 in dotted decimal form is actually stored on the 
computer as 10000100 00010110 00101010 00000001. Each of the 
four decimal numbers represent one byte of the final binary number  

• 132 = 10000100  

• 22 = 00010110  

• 42 = 00101010  

• 1 = 00000001 

The convervsion from dotted quad to binary (and back again) is important for 
some of the following concepts. 

Networks and hosts  

An IP address actually consists of two parts  

• a network portion, and 
This is used to identify the network that the machine belongs to.  Hosts on 
the same network will have this portion of the IP address in common.  This 
is one of the reasons why IP masquerading is reqired for mobile computers 
(e.g. laptops).  If you move a computer to a different network you must 



85321, Systems Administration Chapter 15, Networks: The Connection 

David Jones (20.01.00) Page 386 

give it a different IP address which includes the network address of the new 
network it is connected to. 

• the host portion.  
This is the part which uniquely identifies the host on the network.  

The network portion of the address forms the high part of the address (the bit 
that appears on the left hand side of the number).  The size of the network 
and host portions of an IP address is specified by another 32 bit number 
called the netmask (also known as the subnet mask)netmask.  

To calculate which part of an IP address is the network and which the host the 
IP address and the subnet mask are treated as binary numbers (see diagram 
15.?). Each bit of the subnet mask and the IP address are compared and  

• if the bit is set in both the IP address and the subnet mask then the bit is set 
in the network address,  

• if the bit is set in the IP address but not set in the subnet mask then the bit 
is set in the host address.  

For example  

IP address  138.77.37.21  10001010  01001101  00100101  00100101 
netmask     255.255.255.0   11111111  11111111  11111111  00000000
  
network address  138.77.37.0 10001010  01001101  00100101  00000000 
host address    0.0.0.21     00000000  00000000  00000000  00100101  

The Internet is a network of networks 
The structure of IP addresses can give you some idea of how the Internet 
works.  It is a network of networks.  You start with a collection of machines all 
connected via the same networking hardware, a local area network.  All the 
machines on this local area network will have the same network address, each 
machine also has a unique host address. 

The Internet is formed by connecting a lot of local area networks together.   

For example 

In Figure 15.5 there are two networks, 138.77.37.0 and 138.77.36.0.  
These are two networks on the Rockhampton campus of Central Queensland 
University and both use ethernet as their networking hardware.  This means 
that when a computer on the 37 subnet (the network with the network address 
138.77.37.0) wants to send information to another computing on the 37 subnet 
it simply uses the characteristics of ethernet.  The information is placed on the 
ethernet network and gets broadcasted to every ethernet card on the network.  
The ethernet card which has the appropriate address is the only one which 
“accepts” the information. 

However, if the machine 138.77.37.37 wants to send information to the 
machine 138.77.36.15 it's a bit more complex.  Since both computers are on 
separate networks the machine 138.77.37.37 just can't send information to 
the machine 138.77.36.15.  Instead it has to use a gateway machine (only 



85321, Systems Administration Chapter 15, Networks: The Connection 

David Jones (20.01.00) Page 387 

rarely is the gateway machine a computer but it can be).  The gateway machine 
actually has two network connections.  One connection to the 138.77.37.0 
network and the other to the 138.77.36.0 network.   

It is via this dual connection that the gateway acts as the connection between 
the two networks.  The gateway knows that it should grab any and all packets 
on the 138.77.36.0 network destined for the 138.77.37.0 network (and 
vice versa).  When it grabs these packets the gateway machine transfers them 
from the network device connected to the sending network to the network 
device connected to the receiving network. 

F i g u r e  1 5 . 5  
A  s i m p l e  g a t e w a y   

 

This process is repeated for other networks.  Each network is then connected to 
each other via devices called routers, or perhaps gateways. This is a very 
simple example. 

Assigning IP addresses 

Some IP addresses are reserved for specific purposes and you should not 
assign these addresses to a machine.  Table 15.3 lists some of these addresses 

 

Address Purpose 

xx.xx.xx.0 network address 

xx.xx.xx.1 gateway address * 

xx.xx.xx.255 broadcast address 

127.0.0.1 loopback address 

*  t h i s  i s  n o t  a  s e t  s t a n d a r d  

T a b l e  1 5 . 3  
R e s e r v e d  I P  a d d r e s s e s  



85321, Systems Administration Chapter 15, Networks: The Connection 

David Jones (20.01.00) Page 388 

As mentioned above 127.0.0.1 is a special IP address. It refers to the local host 
(or the loopback address). The local host allows software to address the local 
machine in exactly the same way it would address a remote machine.  For 
those of you without network connections the localhost will be the only 
method you can use to experiment with the concepts  introduced in this and the 
following chapter.  

As shown in the previous examples gateways and routers are able to distribute 
data from one network to another because they are actually physically 
connected to two or more networks through a number of network interfaces. 
Figure 15.5 provides a representation of this.  

The machine in the middle, the gateway machine, has two network interfaces. 
One has the IP address 138.77.37.1 and the other 138.77.36.1 (it’s 
common practice for a networks gateway machine to have the host id 1, but by 
no means compulsory).   

By convention the network address is the IP address with a host address that is 
all 0’s.  The network address is used to identify a network.  

The broadcast address is the IP address with the host address set to all 1’s and 
is used to send information to all the computers on a network, typically used 
for routing and error information. 

Network Classes 

During the development of the TCP/IP protocol stack IP addresses were 
divided into classes.  There are three main address classes, A, B and C. Table 
15.? summarises the differences between the three classes. The class of an IP 
address can be deduced by the value of the first byte of the address. 

 

Class First byte value Netmask Number of hosts 

A 1 to 126 255.0.0.0 16 million 

B 128 to 191 255.255.0.0 64,000 

C 192 to 223 255.255.255.0 254 

Multicast 224 – 239 240.0.0.0  

T a b l e  1 5 . 4  
N e t w o r k  c l a s s e s  

If you plan on setting up a network that is connected to the Interet the 
addresses for your network must be allocated to you by central controlling 
organisation.  You can't just choose any set of addresses you wish, chances are 
they are already taken my some other site. 

If your network will not be connected to the Internet you can choose from a 
range of addresses which have been set aside for this purpose.  These addresses 
are shown in Table 15.4 



85321, Systems Administration Chapter 15, Networks: The Connection 

David Jones (20.01.00) Page 389 

 

Network class Addresses 

A 10.0.0.0 to 10.255.255.255 

B 172.16.0.0 to 172.31.255.255 

C 192.168.0.0 to 192.168.255.255 

T a b l e  1 5 . 5  
N e t w o r k s  r e s e r v e d  f o r  p r i v a t e  n e t w o r k s  

Subnets  

Central Queensland University has a class B network address, 138.77.0.0. 
This would imply that you could make the following assumptions about the IP 
address 138.77.1.1. The network address is 138.77.0.0 and that the 
host address is 1.1, this is after all how a class B address is defined.  

If you did make these implications you would be wrong.  

CQU has decided to break its available IP addresses into further networks, 
called subnets.  Subnetting works by moving the dividing line between the 
network address bits and the host address bits. Instead of using the first two 
bytes for the network address CQU uses subnetting to use the first three bytes.  
This is achieved by setting the netmask to 255.255.255.0. 

This means that the address 138.77.1.1 actually breaks up into a network 
address 138.77.1.0 and a host address of 1. The network 138.77.1.0 is 
said to be a subnet of the larger 138.77.0.0 network.  

Why subnet?  

Subnetting is used for a number of reasons including  

• security reasons, 
Using ethernet all hosts on the same network can see all the packets on the 
network. So it makes sense to put the computers in student labs on a 
different network to the computer on which student results are placed.  

• physical reasons, 
Networking hardware, like ethernet, has physical limitations. You can’t put 
machines on the Mackay campus on the same network as machines on the 
Rockhampton campus (they are separated by about 300 kilometers).   

• political reasons, and 
There may be departments or groups within an organisation that have 
unique needs or want to control their own network. This can be achieved 
by subnetting and allocating them their own network.  

• hardware and software differences. 
Someone may wish to use completely different networking hardware and 
software.  



85321, Systems Administration Chapter 15, Networks: The Connection 

David Jones (20.01.00) Page 390 

"Strange" subnets  

Generally subnet masks are byte oriented, for example 255.255.255.0.  
This means that divide between the network portion of the address and the host 
portion occurs on a byte boundary.  However it is possible and sometimes 
necessary to use bit oriented subnet masks, for example 
255.255.255.224.  Bit oriented implies that this division occurs within a 
byte.  

For example a small company with a class C Internet address might use the 
subnet mask 255.255.255.224.    

Exercises 

15.1. Complete the following table by calculating the network and host 
addresses.  (refer back to the example earlier in the chapter) 

 

IP address Subnet mask Network address Host address 

178.86.11.1   255.255.255.0     

230.167.16.132   255.255.255.192     

132.95.132.5   255.255.240.0     

Name resolution  

We have a problem. People will use hostnames to identify individual 
computers on the network while the computers use the IP address.  How are 
the two reconciled.  

When you enter http://www.lycos.com/  on your WWW browser the first 
thing the networking software must do is find the IP address for 
www.lycos.com . Once it has the IP address it can connect to that machine and 
download the WWW pages.  

The process of taking a hostname and finding the IP address is called name 
resolution.  

Methods of name resolution  

There are two methods that can be used to perform name resolution  

• the /etc/hosts file, and  

• the Domain Name Service.  

/etc/hosts  

One way of performing name resolution is to maintain a file that contains a list 
of hostnames and their equivalent IP addresses. Then when you want to know 
a machine’s IP address you look up the file.  



85321, Systems Administration Chapter 15, Networks: The Connection 

David Jones (20.01.00) Page 391 

Under UNIX the file is /etc/hosts. /etc/hosts is a text file with one 
line per host. Each line has the format  

IP_address hostname aliases  

Comments can be indicated by using the hash # symbol. Aliases are used to 
indicate shorter names or other names used to refer to the same host.  

For example  

For example the hosts file of the machine aldur looks like this  

# every machine has the localhost entry 
127.0.0.1       localhost         loopback 
138.77.36.29    aldur.cqu.edu.au  aldur 
138.77.1.1      jasper.cqu.edu.au jasper 
138.77.37.28    pol.cqu.edu.au    pol  

Problems with /etc/hosts  

When a user on aldur enters the command telnet 
jasper.cqu.edu.au the software first looks in the hosts file for an entry 
for jasper. If it finds an entry it obtains jasper’s IP address and then can 
execute the command.  

What happens if the user enters the command telnet knuth. There isn’t an 
entry for knuth in the hosts file. This means the IP address of knuth can’t be 
found and so the command can’t succeed.  

One solution would be to add an entry in the hosts file for every machine the 
users of aldur wish to access. With over two million machines on the 
Internet it should be obvious that this is not a smart solution.  

Domain name service (DNS)  

The following reading on the DNS was taken from 
http://www.aunic.net/dns.html  

In the early days of the Internet, all host names and their associated IP 
addresses were recorded in a single file called hosts.txt, maintained by the 
Network Information Centre in the USA. Not surprisingly, as the Internet grew 
so did this file, and by the mid-80’s it had become impractically large to 
distribute to all systems over the network, and impossible to keep up to date. 
The Internet Domain Name System (DNS) was developed as a distributed 
database to solve this problem. It’s primary goal is to allow the allocation of 
host names to be distributed amongst multiple naming authorities, rather than 
centralised at a single point.  

DNS structure  

The DNS is arranged as a hierarchy, both from the perspective of the structure 
of the names maintained within the DNS, and in terms of the delegation of 
naming authorities. At the top of the hierarchy is the root domain "." which is 
administered by the Internet Assigned Numbers Authority (IANA). 
Administration of the root domain gives the IANA the authority to allocate 
domains beneath the root, as shown in the diagram below: 



85321, Systems Administration Chapter 15, Networks: The Connection 

David Jones (20.01.00) Page 392 

 

The process of assigning a domain to an organisational entity is called 
delegating, and involves the administrator of a domain creating a sub-domain 
and assigning the authority for allocating sub-domains of the new domain the 
subdomain’s administrative entity.  

This is a hierarchical delegation, which commences at the "root" of the 
Domain Name Space ("."). A fully qualified domain name, is obtained by 
writing the simple names obtained by tracing the DNS hierarchy from the leaf 
nodes to the root, from left to right, separating each name with a stop ".", eg. 

fred.xxxx.edu.au 
 

is the name of a host system (huxley) within the XXXX University (xxx), an 
educational (edu) institution within Australia (au). 

The sub-domains of the root are known as the top-level domains, and include 
the edu (educational), gov (government), and com (commercial) domains. 
Although an organisation anywhere in the world can register beneath these 
three-character top level domains, the vast majority that have are located 
within, or have parent companies based in, the United States. The top-level 
domains represented by the ISO two-character country codes are used in most 
other countries, thus organisations in Australia are registered beneath au. 

The majority of country domains are sub-divided into organisational-type sub-
domains. In some countries two character sub-domains are created (eg. ac.nz 
for New Zealand academic organisations), and in others three character sub-
domains are used (eg. com.au for Australian commercial organisations). 
Regardless of the standard adopted each domain may be delegated to a 
separate authority.  

Organisations that wish to register a domain name, even if they do not plan to 
establish an Internet connection in the immediate short term, should contact the 
administrator of the domain which most closely describes their activities.  

Even though the DNS supports many levels of sub-domains, delegations 
should only be made where there is a requirement for an organisation or 
organisational sub-division to manage their own name space. Any sub-domain 
administrator must also demonstrate they have the technical competence to 
operate a domain name server (described below), or arrange for another 
organisation to do so on their behalf.  



85321, Systems Administration Chapter 15, Networks: The Connection 

David Jones (20.01.00) Page 393 

Domain Name Servers  

The DNS is implemented as collection of inter-communicating nameservers. 
At any given level of the DNS hierarchy, a nameserver for a domain has 
knowledge of all the immediate sub-domains of that domain. 

For each domain there is a primary nameserver, which contains authoritative 
information regarding Internet entities within that domain. In addition 
Secondary nameservers can be configured, which periodically download 
authoritative data from the primary server. Secondary nameservers provide 
backup to the primary nameserver when it is not operational, and further 
improve the overall performance of the DNS, since the nameservers of a 
domain that respond to queries most quickly are used in preference to any 
others.  

/etc/resolv.conf   

When performing a name resolution most UNIX machines will check their 
/etc/hosts first and then check with their name server. How does the 
machine know where its domain name server is. The answer is in the 
/etc/resolv.conf file.  

resolv.conf is a text file with three main types of entries  

• # comments 
Anything after a # is a comment and ignored.  

• domain name 
Defines the default domain. This default domain will be appended to any 
hostname that does not contain a dot.  

• nameserver address 
This defines the IP address of the machines domain name server. It is 
possible to have multiple name servers defined and they will be queried in 
order (useful if one goes down).  

For example  

The /etc/resolv.conf file from my machine is listed below. 

domain cqu.edu.au 
nameserver 138.77.5.6 
nameserver 138.77.1.1   

Routing  

So far we’ve looked at names and addresses that specify the location of a host 
on the Internet. We now move onto routing. Routing is the act of deciding how 
each individual datagram finds its way through the multiple different paths to 
its destination.  

Simple routing  

For most UNIX computers the routing decisions they must make are simple. If 
the datagram is for a host on the local network then the data is placed on the 



85321, Systems Administration Chapter 15, Networks: The Connection 

David Jones (20.01.00) Page 394 

local network and delivered to the destination host.  If the destination host is 
on a remote network then the datagram will be forwarded to the local gateway. 
The local gateway will then pass it on further.  

However, a network the size of the Internet cannot be constructed with such a 
simple approach.  There are portions of the Internet where routing is a much 
more complex business, too complex to be covered as a portion of one week of 
a third year unit. 

Routing tables  

Routing is concerned with finding the right network for a datagram. Once the 
right network has been found the datagram can be delivered to the host.  

Most hosts (and gateways) on the Internet maintain a routing table. The entries 
in the routing table contain the information to know where to send datagrams 
for a particular network.  

Constructing the routing table  

The routing table can be constructed in one of two ways  

• constructed by the Systems Administrator, sometimes referred to as static 
routes,  

• dynamically created by a number of different available routing protocols  

The dynamic creation by routing protocols is complex and beyond the scope of 
this subject.  

Exercises 

15.2. Why is the name server in /etc/resolv.conf specified using an IP 
address and not a hostname?  

TCP/IP Basics Conclusion 

The Internet is a network of networks.  Each network has its own network 
address.  Each computer on those networks has its own network address.  
Network addresses are allocated in classes.  You can’t simply choose an IP 
address yourself.  It must match the network you are connecting to and not be 
used by anyone else.  Most organisations with a range of IP address will split 
them into subnets.  

Software and hardware use IP addresses to identify computers.  People use 
hostnames.  Name resolution makes the connection between a hostname and an 
IP address (and vice versa).  On a small scale name resolution can be done 
with a local file.  However, scaling to a large network requires the use of the 
Domain Name Service. 

Routing is the act of delivering packets of information to the appropriate place.  
With a single physical network routing is quite straight forward.  However 
with a large network of networks maintaining the rules about the routes from 
one to another network can get quite complex. 



85321, Systems Administration Chapter 15, Networks: The Connection 

David Jones (20.01.00) Page 395 

Network Hardware 
The first step in connecting a machine to a network is to find out what sort of 
network hardware you will be using.  The aim of this unit and this chapter is 
not to give you a detailed introduction to networking hardware.  If  you are 
interested in the topic there are a number of  readings and resources mentioned 
throughout this section. 

Before you can use a paticular type of networking hardware, or any hardware 
for that matter, there must be support for that device in the Linux kernel.  If the 
kernel doesn’t support the required hardware then you can’t use it.  Currently 
the Linux kernel offers support for the networking hardware outlined in list 
below.  For more detailed information about hardware support under Linux 
refer to the Hardware Compatibility HOWTO available from your nearest 
mirror of the Linux Documentation Project.  

Some of the hardware supported includes arcnet, ATM  
http://lrcwww.epfl.ch/linux-atm/, AX25 amateur radio, FDDI, Frame relay, 
ISDN, modems, serial and parallel, radio modem, token ring, X.25, WaveLan, 
wireless, card, and ethernet 

In most "normal" situations the networking hardware being used will be either  

• modem 
A modem is a serial device so your Linux kernel should support the 
appropriate serial port you have in your computer.  The networking 
protocol used on a modem will be either SLIP or PPP which must also be 
supported by the kernel.  

• ethernet 
Possibly the most common form of networking hardware at the moment.  
There are a number of different ethernet cards.  You will need to make sure 
that the kernel supports the particular ethernet card you will be using.  The 
Hardware Compatibility HOW-TO and the Ethernet HOWTO cover this 
information. 

Network devices 

As mentioned in chapter 10 the only way a program can gain access to a 
physical device is via a device file.  Network hardware is still hardware so it 
follows that there should be device files for networking hardware.  Under other 
versions of the UNIX operating system this is true.  It is not the case under the 
Linux operating system. 

Device files for networking hardware are created, as necessary, by the device 
drivers contained in the Linux kernel (ethernet and others) or by user programs 
which make network connections (e.g. modems, PPP connections).  These 
device files are not available for other programs to use.  This means I can’t 
execute the command 

cat < /etc/passwd > /dev/eth0 

The only way information can be sent via the network is by going through the 
kernel. 



85321, Systems Administration Chapter 15, Networks: The Connection 

David Jones (20.01.00) Page 396 

Remember, the main reason UNIX uses device files is to provide an 
abstraction which is independent of the actual hardware being used.  A 
network device file must be configured properly before you can use it send and 
receive information from the network.  The process for configuring a network 
is discussed later in this chapter. 

The installation process for RedHat will normally perform some network 
configuration for you.  Tofind out what network devices are currently active on 
your system have a look at the contents of the file /proc/net/dev/ 

[david@faile]$ cat /proc/net/dev 
Inter-|   Receive                  |  Transmit 
 face |packets errs drop fifo frame|packets errs drop fifo colls carrier 
    lo:     91    0    0    0    0       91    0    0    0     0    0 
  eth0:      0    0    0    0    0       60    0    0    0     0   60 

On this machine there are two active network devices. lo: the loopback 
device and eth0: an ethernet device file.  If a computer has more than one 
ethernet interface (network devices are usually called network interfaces) you 
would normally see entries for eth1 eth2 etc. 

IP aliasing (talked about more later) is the ability for a single ethernet card to 
have more than one Internet address (often used when a single computer is 
acting as the Web server for many different sites).  The following example 
shows the contents of the /proc/net/dev file for a machine using IP aliasing.  It 
is not normal for an ethernet card to have multiple IP addresses, normally 
each ethernet card/interface will have one IP address. 

[david@cq-pan ]$ cat /proc/net/dev 
Inter-|   Receive                  |  Transmit 
face |packets errs drop fifo frame|packets errs drop fifo colls carrier 
  lo: 285968    0    0    0    0   285968    0    0    0     0    0 
eth0:61181891  59   59    0   89 77721923    0    0    0 11133617   57 
eth0:0:  48849    0    0    0    0      212    0    0    0     0    0 
eth0:1:  10894    0    0    0    0      210    0    0    0     0    0 
eth0:2: 481325    0    0    0    0      259    0    0    0     0    0 
eth0:3:  29178    0    0    0    0      215    0    0    0     0    0    

You can see that the device files for an aliased ethernet device uses the format 
ethX:Y where X is the number for the ethernet card and Y is the number of the 
aliased device.  Since aliased devices use the same ethernet card they must use 
the same network, after all you can’t connect a single ethernet card to two 
networks. 

Ethernet 

The following provides some very brief background information on ethernet 
which will be useful in the rest of the chapter.  Refer to the Ethernet HOWTO 
for more information. 

Ethernet addresses  

Every ethernet card has built into it a 48 bit address (called an Ethernet address 
or a Media Access Control (MAC) address). The high 24 bits of the address 
are used to assign a unique number to manufacturers of ethernet addresses and 
the low 24 bits are assigned to individual ethernet cards made by the 
manufacturer.  



85321, Systems Administration Chapter 15, Networks: The Connection 

David Jones (20.01.00) Page 397 

Some example ethernet addresses, you will notice that ethernet addresses are 
written using 6 tuples of HEX numbers, are listed below 

00:00:0C:03:79:2F 
00:40:F6:60:4D:A4  
00:20:AF:A4:55:87  
00:20:AF:A4:55:7B  

Notice that the last two ethernet cards were made by the same manufacturer 
(with the manufacturers number of 00:20:AF).  

Ethernet is a broadcast medium 
Every packet, often called an ethernet frame, of information sent on ethernet 
contains a source and destination MAC address. The packet is placed on a 
ethernet network and every machine, actually the ethernet card, on the network 
looks at the packet. If the card recognises the destination MAC as its own it 
"grabs" the packet and passes it to the Network access layer.  

It is possible to configure your ethernet card so that it grabs all packets sent on 
the network.  This is how it is possible to "listen in" on other people on a 
ethernet network. 

A single ethernet network cannot cover much more than a couple of hundred 
meters.  How far depends on the type of cabling used. 

Converting hardware addresses to Internet addresses 

The network access layer, the lowest level of the TCP/IP protocol stack is 
responsible for converting Internet addresses into hardware addresses, such as 
MAC addresses.  This is how TCP/IP can be used over a large number of 
different networking hardware.  As you might have guessed different 
networking hardware uses different addressing schemes.  

Address Resolution Protocol 

The mapping of ethernet addresses into Internet addresses is performed by the 
Address Resolution Protocol (ARPARP). ARP maintains a table that contains 
the translation between IP address and ethernet address. 

When the machine wants to send data to a computer on the local ethernet 
network the ARP software is asked if it knows about the IP address of the 
machine (remember the software deals in IP addresses). If the ARP table 
contains the IP address the ethernet address is returned.  

If the IP address is not known a packet is broadcast to every host on the local 
network, the packet contains the required IP address. Every host on the 
network examines the packet. If the receiving host recognises the IP address as 
its own, it will send a reply back that contains its ethernet address. This 
response is then placed into the ARP table of the original machine (so it knows 
it next time).  

The ARP table will only contain ethernet addresses for machines on the local 
network.  Delivery of information to machines not on the local network 
requires the intervention of routing software which is introduced later in the 
chapter. 



85321, Systems Administration Chapter 15, Networks: The Connection 

David Jones (20.01.00) Page 398 

arp  

On a UNIX machine you can view the contents of the ARP table using the 
arp command. arp -a will display the entire table.  

The following example shows how the arp cache for a computer is built as it 
goes.  In the first use of the arp command you can see three machines in the 
cache, centaurus, draal and a ?.  The ? is almost certainly one of the NT 
computers in the student labs at CQU.  Draal is one of the Linux computers 
used by project students and centaurus is the gateway between the 138.77.37 
network and the rest of the world.                                

[root@cq-pan logs]# /sbin/arp –a 
centaurus.cqu.EDU.AU (138.77.37.1) at AA:00:04:00:0B:1C [ether] on eth0 
draal.cqu.EDU.AU (138.77.37.100) at 00:20:AF:33:B5:BE [ether] on eth0 
? (138.77.37.46) at <incomplete> on eth0      

To see how new entries are added to the cache the next example shows the 
ping command.  ping is often used to test a network connection and to see if a 
particular machine is alive.  In this case I’m pinging pug, who also happens to 
be on the 138.77.37 network. 

[root@cq-pan logs]# ping pug 
PING pug.cqu.edu.au (138.77.37.102): 56 data bytes 
64 bytes from 138.77.37.102: icmp_seq=0 ttl=64 time=19.0 ms 
 
--- pug.cqu.edu.au ping statistics --- 
1 packets transmitted, 1 packets received, 0% packet loss 
round-trip min/avg/max = 19.0/19.0/19.0 ms 

Since we’ve now contacted pug and pug is on the same network as this 
machine its entry should now appear in the arp cache. 

[root@cq-pan logs]# /sbin/arp –a 
centaurus.cqu.EDU.AU (138.77.37.1) at AA:00:04:00:0B:1C [ether] on eth0 
draal.cqu.EDU.AU (138.77.37.100) at 00:20:AF:33:B5:BE [ether] on eth0 
pug.cqu.EDU.AU (138.77.37.102) at 00:20:AF:A4:3B:0F [ether] on eth0 
? (138.77.37.46) at <incomplete> on eth0    

There (s)he blows.  If pug was not on the same local area network its ethernet 
address would not be added to the arp cache.  Remember,  ethernet addresses 
are only used to communicate with machines on the same ethernet network.  
For example, if I ping the machine www.cqu.edu.au it won’t be added to the 
arp cache  since it is on a different network.                              

[root@cq-pan logs]# ping www 
PING plato.cqu.edu.au (138.77.5.4): 56 data bytes 
64 bytes from 138.77.5.4: icmp_seq=0 ttl=63 time=1.7 ms 
 
--- plato.cqu.edu.au ping statistics --- 
1 packets transmitted, 1 packets received, 0% packet loss 
round-trip min/avg/max = 1.7/1.7/1.7 ms       

SLIP, PPP and point to point 

SLIP and PPP, used to connect machines via serial lines (and modems) are not 
broadcast media.  They are simple "point-to-point" connections between two 
computers.  This means that when information is placed on a SLIP/PPP 
connection only the two computers at either end of that connection can see the 



85321, Systems Administration Chapter 15, Networks: The Connection 

David Jones (20.01.00) Page 399 

information.  SLIP/PPP are usually used when a computer is connected to a 
network via a modem or a serial connection. 

This chapter does not provide any more discussion of SLIP/PPP.  However all  
the basic concepts and the fundamental process for connecting a machine to 
the network are the same for SLIP/PPP as they are for ethernet.  This is one of 
the advantages of TCP/IP networking being layered.  Above a certain level, i.e. 
when the network interface is configured, the system works the same 
regardless of the hardware.  Refer to the appropriate HOWTOs for more 
information. 

Kernel suppor t for  networking 
Ensuring that the kernel includes support for your networking hardware is only 
the first step.  In order to supply certain network services it is necessary for 
them to be compiled into the kernel. The following is a list of some of the 
services that the Linux kernel can support.  The list itself may be a touch out of 
date.  If in doubt refer to the appropriate networking and kernel HOWTOs. 

• IP accounting 
IP accounting must be compiled into the kernel and is configured with the 
ipfwadm command.  IP accounting allows you to track the number of 
bytes and packets transmitted over the network connection.  This is useful 
in situations where you must track the network usage of your users.  For 
example, if you are a Internet Service Provider. 

• IP aliasing  
Essentially, IP aliasing allows your computer to pretend it is more than one 
computer.  In a normal configuration each network device is allocated a 
single IP address.  However there are times when you wish to allocate 
multiple IP addresses to a computer with a single network interface.  The 
most common example of this is web sites, for example, the websites 
http://cq-pan.cqu.edu.au/ , http://webclass.cqu.edu.au/ , and 
http://webfuse.cqu.edu.au/  are all hosted by one computer.  This 
computer only has one ethernet card and uses IP aliasing to create aliases 
for the ethernet card.  The ethernet card’s real IP address is 138.77.37.37 
and its three alias addresses are 138.77.37.36, 138.77.37.59 and 
138.77.37.108. 
 
Normally the interface would only grab the network packets addressed to 
138.77.37.37 but with network aliasing it will grab the packets for all three 
addresses.   
 
You can see this in action by using the arp command.    Have a look at the 
hardware addresses for the computers cq-pan, webclass and webfuse.  
What can you tell? 

[david@draal david]$ /sbin/arp 
Address               HWtype  HWaddress           Flags Mask         Iface 
centaurus.cqu.EDU.AU  ether   AA:00:04:00:0B:1C   C                   eth0 
webfuse.cqu.EDU.AU    ether   00:60:97:3A:AA:85   C                     eth0 
cq-pan.cqu.EDU.AU     ether   00:60:97:3A:AA:85   C                     eth0 
science.cqu.EDU.AU    ether   00:00:F8:01:9E:DA   C                     eth0 



85321, Systems Administration Chapter 15, Networks: The Connection 

David Jones (20.01.00) Page 400 

borric.cqu.EDU.AU     ether   00:20:AF:A4:39:39   C                     eth0 
webclass.cqu.EDU.AU   ether   00:60:97:3A:AA:85   C                     eth0 
138.77.37.46                  (incomplete)                              eth0 
 

• IP firewall 
This option allows you to use a Linux computer to implement a firewall.  A 
firewall works by allowing you to selectively ignore certain types of 
network connections.  By doing this you can restrict what access there is to 
your computer (or the network behind it) and as a result help increase 
security.   
 
The firewall option is closely related to IP accounting, for example it is 
configured with the same command, ipfwadm.   
 
Firewall support has changed in the newer 2.2 kernels.  Please refer to the 
appropriate HOWTOs. 

• IP encapsulation 
IP encapsulation is where the IP packet from your machine is wrapped 
inside another IP packet.  This is of particular use mobile IP, IP multicast 
and the new buzzword Virtual Private Networks (VPNs). 

• IPX 
IPX protocol is used in Novel Netware systems.  Including IPX support in 
the Linux kernel allows a Linux computer to communicate with Netware 
machines. 

• IPv6 
IPv6, version 6 of the IP protocol, is the next generation of which is slowly 
being adopted.  IPv6 includes support for the current IP protocol.  Linux 
support for IPv6 is slowly developing.  You can find more information at 
http://www.v6.linux.or.jp/ 

• IP masquerade 
IP masquerade allows multiple computers to use a single IP address.  One 
situation where this can be useful is when you have a single dialup 
connection to the Internet via an Internet Service Provider (ISP).  
Normally,such  a dialup connection can only be used by the machine which 
is connected.  Even if the dialup machine is on a LAN with other machines 
connected they cannot access the Internet.  However with IP masquerading 
it is possible to allow all the machines on that LAN access the Internet.  

• Network Address Translation 
Support for network address translation for Linux is still at an apha stage.  
Network address translation is the "next version" of IP masquerade.  See 
http://linas.org/linux/load.html  for more information. 

• Mobile IP 
Since an IP address consists of both a network address and a host address it 
can normally only be used when a machine is connected to the network 
specified by the network address.  Mobile IP allows a machine to be moved 
to other networks but still retain the same IP.  IP encapsulation is used to 
send packets destined for the mobile machine to its new location.  See for 



85321, Systems Administration Chapter 15, Networks: The Connection 

David Jones (20.01.00) Page 401 

http://www.hpl.hp.com/personal/Jean_Tourrilhes/Mob
ileIP/mip.html  more information. 

• IP multicast 
IP multicast is used to send packets simultaneously to computers and 
separate IP networks.  It is used for a variety of audio and video 
transmission.  See http://www.teksouth.com/linux/multicast/  for 
more information. 

• EQL 
EQL allows you to treat multiple point-to-point connections (SLIP, PPP) as 
a single logical TCP/IP connection. 

By default the Linux kernel will have most of the networking services you 
require already compiled into it.  However, if you want to make use of some of 
the additional features you need to check and possibly recompile the kernel 
with support for the required feature. 

Configur ing the connection 
Having reached this stage it is assumed that you have connected (or inserted) 
your networking hardware (in)to your computer and have (if necessary) 
recompiled the kernel to provide the necessary networking support.  This 
section provides an overview of configuring a network connection for a fairly 
typical local area network using ethernet.  The steps are much the same for 
other types of hardare. 

The Configuration Process 

The configuration process includes the following steps 

• Configure the devices 
Done either at system startup time (ethernet and other permanent 
connections) or by a user program (on-demand connections such as PPP 
over modems) this process configures the network devices with the 
appropriate information including IP address, network address etc. 

• Configure the name resolver 
This step sets up the DNS so that your system can translate IP addresses 
into hostnames and vice versa 

• Configure routing 
Informs the system how it is meant to send information from one network 
to another. 

The following discusses how these steps are performed. 

If you were planning to include some of the more advanced features available 
in the Linux kernel, such as IP masquerading, IP aliasing or EQL, you would 
have to perform additional steps as outlined in the appropriate HOWTOs or 
manual pages. 



85321, Systems Administration Chapter 15, Networks: The Connection 

David Jones (20.01.00) Page 402 

Configuration Related Tools and Files 

Configuring the network interface generally makes use of the following 
tools/files 

• command line tools such as ifconfig 

The standard tools used to perform the configuration you might use this 
from the command line or it might be performed by systems startup scripts. 

• device configuration files 
Most distributions of Linux use text-based files to store the configuration 
information used by ifconfig .  RedHat uses the 
/etc/sysconfig/network  file and the /etc/sysconfig/network-

scripts  directory to contain these files which are used as the system starts 
up.  The detail in these files includes IP address, netmask and broadcast 
addresses for the various devices. 

• Network configuration files 
These files provide details for other network services such as DNS and 
routing. 

• Startup files 
Chances are you will want your network to be automatically configured 
whenever the computer is turned on.  This is where the system startup files 
enter the picture. 

• GUI configuration tools 
To help ease the load most systems provide some sort of GUI tool which 
allows you to perform many of these tasks. 

Configuring the device/interface 

Earlier in the chapter the concept of a network device was introduced.  The 
following section examines what is required to configure the network device 
so that it operates.  Configuring the network device draws on some of the basic 
TCP/IP concepts introduced in previous sections. 

The loopback device/interface 

The loopback device is a special case.  It is always present and is used to 
provide access to your own machine.  Even if you do not have a network 
connection you will be able to use the loopback interface to test some of the 
basic networking services.  The loopback interface always has the IP address 
127.0.0.1.  Whenever you use the IP address 127.0.0.1 you are 
connecting to your own computer. 

ifconfig 

Network interfaces are configured using the ifconfig command and has the 
standard format for turning a device on 

 ifconfig device_name IP_address netmask netmask up 

For example 



85321, Systems Administration Chapter 15, Networks: The Connection 

David Jones (20.01.00) Page 403 

• ifconfig eth0 138.77.37.26 netmask 255.255.255.0 up 
Configures the first ethernet address with the IP address of 138.77.37.26 
and the netmask of 255.255.255.0. 

• ifconfig lo 127.0.0.1  
Configures the loopback address appropriately. 

Other parameters for the ifconfig command include 

• up and down 
These parameters are used to take the device up and down (turn it on and 
off).  ifconfig eth0 down will disable the eth0 interface and will require an 
ifconfig command like the first example above to turn it back on. 

• -arp  
Will turn on/off the address resolution protocol for the specified interface. 

• -pointtopoint addr 
Used to specify the IP address (addr) of the computer at the far end of a 
point to point link. 

RedHat Configuration Files 

Redhat uses the /etc/sysconfig/network  file and the contents of the 
/etc/sysconfig/network-scripts  directory to help in the configuration of 
network devices during the startup of the system.  Hopefully you can draw 
some useful conclusions from the following examples 

[root@cq-pan sysconfig]# cat network 
NETWORKING=yes 
FORWARD_IPV4=false 
HOSTNAME=cq-pan.cqu.edu.au 
DOMAINNAME=cqu.edu.au 
GATEWAY=138.77.37.1 
GATEWAYDEV=eth0 
[root@cq-pan sysconfig]# cat  network-scripts/ifcfg-eth0 
DEVICE=eth0 
IPADDR=138.77.37.37 
NETMASK=255.255.255.0 
NETWORK=138.77.37.0 
BROADCAST=138.77.37.255 
ONBOOT=yes                     

The GUI configuration tools for RedHat Linux modify these files. 

The script which actually starts networking on a RedHat Linux machine is 
/etc/rc.d/init.d/network 

A more indepth explanation of these files please refer to the RedHat manuals 
for 6.1.  

Configuring the name resolver 

Once the device/interface is configured you can start using the network.  
However you’ll only be able to use IP addresses.  At this stage the networking 
system on your computer will not know how to resolve hostnames (convert 
hostnames into IP addresses).  So if I was configuring a machine on the 



85321, Systems Administration Chapter 15, Networks: The Connection 

David Jones (20.01.00) Page 404 

138.77.37 subnet (this is the student subnet in the IT building) at CQU I would 
be able to execute commands like 

telnet 138.77.37.37 

but I would not be able to execute commands such as 

telnet cq-pan.cqu.edu.au 

Even though the IP address for the machine cq-pan.cqu.edu.au is 138.77.37.37 
the networking on my machine doesn’t know how to do the translation. 

This is where the name resolver and its associated configuration files enter the 
picture.  In particular the three files we’ll be looking at are 

• /etc/resolv.conf 
Specifies where the main domain name server is located for your machine. 

• /etc/hosts.conf 
Allows you to specify how the name resolver will operate.  For example, 
will it ask the domain name server first or look at a local file. 

• /etc/hosts 
A local file which specifies the IP/hostname association between common 
or local computers. 

The following is an excerpt from the NET-3 HOW-TO which describes these 
files in a bit more detail. 

/etc/resolv.conf 

The /etc/resolv.conf is the main configuration file for the name 
resolver code. Its format is quite simple. It is a text file with one keyword per 
line. There are three keywords typically used, they are:  

• domain 
This keyword specifies the local domain name. 

• search 
This keyword specifies a list of alternate domain names to search for a 
hostname 

• nameserver 
This keyword, which may be used many times, specifies an IP address of a 
domain name server to query when resolving names 

An example /etc/resolv.conf  might look something like:  

domain maths.wu.edu.au 
search maths.wu.edu.au wu.edu.au 
nameserver 192.168.10.1 
nameserver 192.168.12.1 

This example specifies that the default domain name to append to unqualified 
names (ie hostnames supplied without a domain) is maths.wu.edu.au and that if 
the host is not found in that domain to also try the wu.edu.au domain directly. 
Two nameservers entry are supplied, each of which may be called upon by the 
name resolver code to resolve the name. 



85321, Systems Administration Chapter 15, Networks: The Connection 

David Jones (20.01.00) Page 405 

/etc/host.conf 

The /etc/host.conf file is where you configure some items that govern the 
behaviour of the name resolver code. 

The format of this file is described in detail in the ‘resolv+’ man page. In 
nearly all circumstances the following example will work for you:                              

order hosts,bind                                           

multi on   

This configuration tells the name resolver to check the /etc/hosts file before 
attempting to query a nameserver and to return all valid addresses for a host 
found in the /etc/hosts file instead of just the first. 

/etc/hosts 

The /etc/hosts file is where you put the name and IP address of local hosts. If 
you place a host in this file then you do not need to query the domain name 
server to get its IP Address. The disadvantage of doing this is that you must 
keep this file up to date yourself if the IP address for that host changes. In a 
well managed system the only hostnames that usually appear in this file are an 
entry for the loopback interface and the local hosts name. 

# /etc/hosts 
127.0.0.1      localhost loopback 
192.168.0.1    this.host.name 

You may specify more than one host name per line as demonstrated by the first 
entry, which is a standard entry for the loopback interface. 

Configuring routing 

Having performed each of the preceding steps the networking on your 
computer will still not be working 100% correctly.  For example, assume I’m 
adding a machine to the 138.77.37 subnet at CQU with the IP address as 
138.77.37.105 and the hostname fred.  I’ve configured the network interface 
and set up the following files 

(For the following discussion it is important to realise that CQU has a class B 
address, 138.77, and creates subnets which look like class C address, i.e.  
138.77.37, 138.77.1 and 138.77.5 are all separate subnets) 

• /etc/resolv.conf 

search cqu.edu.au  
nameserver 138.77.5.6 
nameserver 138.77.1.23 

• /etc/host.conf 

order hosts,bind 
multi on 

• /etc/hosts 

127.0.0.1 localhost localhost.localdomain 
138.77.37.105 fred fred.cqu.edu.au 
138.77.37.37    cq-pan   cq-pan.cqu.edu.au 



85321, Systems Administration Chapter 15, Networks: The Connection 

David Jones (20.01.00) Page 406 

Now, see what happens when I execute the following commands 

[david@fred david]$ ping cq-pan.cqu.edu.au 
PING cq-pan.cqu.edu.au (138.77.37.37): 56 data bytes 
64 bytes from 138.77.37.37: icmp_seq=0 ttl=63 time=1.1 ms 
64 bytes from 138.77.37.37: icmp_seq=1 ttl=63 time=1.0 ms 
64 bytes from 138.77.37.37: icmp_seq=2 ttl=63 time=1.0 ms 

 
--- cq-pan.cqu.edu.au ping statistics --- 
3 packets transmitted, 3 packets received, 0% packet loss 
round-trip min/avg/max = 1.0/1.0/1.1 ms      
 

[root@fred network-scripts]# ping jasper.cqu.edu.au  
ping: unknown host jasper.cqu.edu.au    

Why the difference?  We’ve setup the name resolution configuration files 
properly so why can’t it resolve the name jasper.cqu.edu.au to the IP 
address 138.77.1.1?  Have a look at the IP addresses of the domain name 
servers specified in the /etc/resolv.conf file above?  What can you tell 
about these hosts? 

The major difference between the domain name servers and our new host 
fred is that they are on separate subnets.  At this stage our host has not been 
told how it is meant to send information from its own subnet to other subnets 
(remember the discussion earlier in the chapter about arp and ethernet being a 
broadcast medium?). 

fred.cqu.edu.au is able to use the cq-pan.cqu.edu.au hostname 
because it is specified in the /etc/hosts file and it can send information to 
that machine because it is on the same subnet. Because the domain name 
servers are on another subnet the networking software on the machine doesn’t 
know how to communicate with them.  An example of what happens can be 
seen in the following command where rather than use 
jasper.cqu.edu.au’s hostname we use the IP address. 

[david@fred david]$ ping 138.77.1.1 
PING 138.77.1.1 (138.77.1.1): 56 data bytes 
ping: sendto: Network is unreachable 
ping: wrote 138.77.1.1 64 chars, ret=-1 
ping: sendto: Network is unreachable 
ping: wrote 138.77.1.1 64 chars, ret=-1 
 
--- 138.77.1.1 ping statistics --- 
2 packets transmitted, 0 packets received, 100% packet loss 

The solution to this problem is to configuring the routing software on our 
computer.  Routing is the art of deciding how to send IP packets from one host 
to another, particularly where there are possibly multiple paths that could be 
used.  In our example above we have to specify how the networking software 
is to deliver IP packets from our current subnet, 138.77.37, to other subnets. 

Routing is a huge and complex topic.  It is not possible to provide a detailed 
introduction in the confines of this text.  If you need more information you 
should take a look at the relevant HOWTOs and especially the Linux Network 
Administrators Guide.  



85321, Systems Administration Chapter 15, Networks: The Connection 

David Jones (20.01.00) Page 407 

An explanation of routing tables and commands 

 The following is an excerpt rom the NET-3 HOW-TO which briefly describes 
the routing table and the commands used to manipulate it. 

Ok, so how does routing work ? Each host keeps a special list of routing rules, 
called a routing table. This table contains rows which typically contain at least 
three fields, the first is a destination address, the second is the name of the 
interface to which the datagram is to be routed and the third is optionally the IP 
address of another machine 

which will carry the datagram on its next step through the network. In linux 
you can see this table by using the following command:  

# cat /proc/net/route  

or by using either of the following commands:  

# /sbin/route –n 
# /bin/netstat -r  

The routing process is fairly simple: an incoming datagram is received, the 
destination address (who it is for) is examined and compared with each entry 
in the table. The entry that best matches that address is selected and the 
datagram is forwarded to the specified interface. If the gateway field is filled 
then the datagram is forwarded to that host via the specified interface, 
otherwise the destination address is assumed to be on the network supported by 
the interface. 

To manipulate this table a special command is used. This command takes 
command line arguments and converts them into kernel system calls that 
request the kernel to add, delete or modify entries in the routing table. The 
command is called ‘route’. 

A simple example. Imagine you have an ethernet network. You’ve been told it 
is a class-C network with an address of 192.168.1.0. You’ve been supplied with 
an IP address of 192.168.1.10 for your use and have been told that 192.168.1.1 
is a router connected to the Internet. 

The first step is to configure the interface as described earlier. You would use a 
command like:  

# ifconfig eth0 192.168.1.10 netmask 255.255.255.0 up  

You now need to add an entry into the routing table to tell the kernel that 
datagrams for all hosts with addresses that match 192.168.1.* should be sent to 
the ethernet device. You would use a command similar to:  

# route add -net 192.168.1.0 netmask 255.255.255.0 eth0  

Note the use of the ‘-net’ argument to tell the route program that this entry is a 
network route. Your other choice here is a ‘-host’ route which is a route that is 
specific to one IP address. 

This route will enable you to establish IP connections with all of the hosts on 
your ethernet segment. But what about all of the IP hosts that aren’t on your 
ethernet segment ? 



85321, Systems Administration Chapter 15, Networks: The Connection 

David Jones (20.01.00) Page 408 

It would be a very difficult job to have to add routes to every possible 
destination network, so there is a special trick that is used to simplify this task. 
The trick is called the ‘default’ route. The default route matches every possible 
destination, but poorly, so that if any other entry exists that matches the 
required address it will be used instead of the default route. The idea of the 
default route is simply to enable you to say "and everything else should go 
here". In the example I’ve contrived you would use an entry like:  

      # route add default gw 192.168.1.1 eth0 

The ‘gw’ argument tells the route command that the next argument is the IP 
address, or name, of a gateway or router machine which all datagrams 
matching this entry should be directed to for further routing. 

So, your complete configuration would look like:  

      # ifconfig eth0 192.168.1.10 netmask 255.255.255.0 up 
      # route add -net 192.168.1.0 netmask 255.255.255.0 eth0 
      # route add default gw 192.168.1.1 eth0 

These steps are actually performed automatically by the startup files on a 
properly configured Linux box. 

Network “ management”  tools 
You might ask, "Why the hell are we playing with all these text files and 
commands?  Why can’t we just use the nice GUI tools that come with RedHat".  
The simple answer is that knowing how to use a GUI tool isn’t all that difficult, 
anyone can learn that.  What’s important for a computing professional, like a 
Systems Administrator, to know is what is going on underneath.  There will be 
times when the GUI doesn’t work or the problem you have can’t be solved with 
the GUI.  It is at times like this that you will need to understand what is going 
on underneath. 

Having said that it can be a lot quicker to perform simple tasks using a GUI 
than with text files and a command line (depending on your personal 
preference).  The following section introduces the GUI tools RedHat provides 
to manage and configure networking and also looks at a couple of other useful 
commands UNIX provides. 

RedHat GUI Networking Tools 

RedHat supplies a number of GUI administration tools which are all launched 
from the control-panel application by typing control-panel from a shell 
(you must be running X-Windows as control-panel is an X application).  Each 
of the icons in the control panel window correspond to one of the GUI tools.  
Holding the mouse over the icon will cause it to display the name of the tool. 

Of particular interest to this chapter is the network configuration tool which 
allows you to configure the hosts, name servers, devices and routing for your 
system.   

You might also be interested in using linuxconf a popular GUI configuration 
tool which provides a number of interfaces. 



85321, Systems Administration Chapter 15, Networks: The Connection 

David Jones (20.01.00) Page 409 

nslookup  

The nslookup command is used to query a name server and is supplied as a 
debugging tool. It is generally used to determine if the name server is working 
correctly and for querying information from remote servers.  

nslookup can be used from either the command line or interactively. Giving 
nslookup a hostname will result in it asking the current domain name server 
for the IP address of that machine.  

nslookup also has an ls command that can be used to view the entire 
records of the current domain name server.  

For example  

 [david@cq-pan:~]$ nslookup  
Default Server:  circus.cqu.edu.au 
Address:  138.77.5.6 
 
> jasper 
Server:  circus.cqu.edu.au 
Address:  138.77.5.6 
 
Name:    jasper.cqu.edu.au 
Address:  138.77.1.1 
 
> exit 
[david@cq-pan:~]$ nslookup jasper  
Server:  circus.cqu.edu.au 
Address:  138.77.5.6 
 
Name:    jasper.cqu.edu.au 
Address:  138.77.1.1 
 

netstat 

The netstat command is used to display the status of network connections 
to a UNIX machine. One of the functions it can be used for is to display the 
contents of the kernel routing table by using the -r switch.  

For example  

The following examples are from two machines on CQU’s Rockhampton 
campus. The first one is from telnet jasper  

[david@cq-pan:~]$ netstat -rn  
Kernel routing table 
Destination     Gateway         Genmask         Flags Metric Ref Use    Iface 
138.77.37.0     0.0.0.0         255.255.255.0   U     0      0   109130 eth0 
127.0.0.0       0.0.0.0         255.0.0.0       U     0      0     9206 lo 
0.0.0.0         138.77.37.1     0.0.0.0         UG    0      0   2546951 eth0   
bash$ netstat -rn 
Routing tables 
Destination          Gateway              Flags    Refcnt Use        Interface 
127.0.0.1            127.0.0.1            UH       56     7804440    lo0 
default              138.77.1.11          UG       23     1595585    ln0 
138.77.32            138.77.1.11          UG       0      19621      ln0 
138.77.16            138.77.1.11          UG       0      555        ln0 
138.77.8             138.77.1.11          UG       0      385345     ln0 
138.77.80            138.77.1.11          UG       0      0          ln0 



85321, Systems Administration Chapter 15, Networks: The Connection 

David Jones (20.01.00) Page 410 

138.77.72            138.77.1.11          UG       0      0          ln0 
138.77.64            138.77.1.11          UG       0      0          ln0 
138.77.41            138.77.1.11          UG       0      0          ln0         

traceroute  

For some reason or another, users on one machine cannot connect to another 
machine or if they can any information transfer between the two machines is 
either slow or plagued by errors. What do you do?  

Remember it is not only the machines at the two ends you have to check. If the 
two machines are on different networks the information will flow through a 
number of gateways and routers. It might be one of the gateway machines that 
is causing the problem.  

The traceroute command provides a way of discovering the path taken by 
information as it goes from one machine to another and can be used to identify 
where problems might be occurring. On the Internet that path may not always 
be the same.  

For example  

The following are the results of a number of executions of traceroute from the 
machine aldur ( 138.77.36.29).  

In the first example the machine knuth is on the same network as aldur. This 
means that the information can get their directly. 

 bash$ traceroute knuth  
traceroute to knuth.cqu.edu.au (138.77.36.20), 30 hops max, 40 byte 
packets 
1 knuth.cqu.EDU.AU (138.77.36.20) 2 ms 2 ms 2 ms 
  

jasper is one network away from aldur  

 bash$ traceroute jasper  
traceroute to jasper.cqu.edu.au (138.77.1.1), 30 hops max, 40 byte 
packets 
1 centaurus.cqu.EDU.AU (138.77.36.1) 1 ms 1 ms 1 ms 
2 jasper.cqu.EDU.AU (138.77.1.1) 2 ms 1 ms 1 ms       

A machine still on the CQU site but a little further away  

 bash$ traceroute jade  
traceroute to jade.cqu.edu.au (138.77.7.2), 30 hops max, 40 byte 
packets 
1 centaurus.cqu.EDU.AU (138.77.36.1) 1 ms 1 ms 1 ms 
2 hercules.cqu.EDU.AU (138.77.5.3) 4 ms 2 ms 12 ms 
3 jade.cqu.EDU.AU (138.77.7.2) 3 ms 13 ms 3 ms  

A host still in Australia (but a long way from CQU)  

 bash$ traceroute archie.au  
traceroute to archie.au (139.130.23.2), 30 hops max, 40 byte packets 
1 centaurus.cqu.EDU.AU (138.77.36.1) 1 ms 1 ms 1 ms 
2 tucana.cqu.EDU.AU (138.77.5.27) 2 ms 2 ms 2 ms 
3 138.77.32.10 (138.77.32.10) 5 ms 5 ms 5 ms 
4 qld.gw.au (139.130.60.1) 21 ms 13 ms 51 ms 
5 national.gw.au (139.130.48.1) 35 ms 36 ms 40 ms 
6 plaza.aarnet.edu.au (139.130.23.2) 38 ms 35 ms 68 ms        



85321, Systems Administration Chapter 15, Networks: The Connection 

David Jones (20.01.00) Page 411 

A host in the Eastern United States.  
bash$ traceroute sunsite.unc.edu 
traceroute to knuth.cqu.edu.au (139.130.23.2), 30 hops max, 40 byte packets 
1 centaurus.cqu.EDU.AU (138.77.36.1) 1 ms 1 ms 1 ms 
2 tucana.cqu.EDU.AU (138.77.5.27) 2 ms 2 ms 3 ms 
3 138.77.32.10 (138.77.32.10) 5 ms 5 ms 5 ms 
4 qld.gw.au (139.130.60.1) 13 ms 20 ms 13 ms 
5 national.gw.au (139.130.48.1) 51 ms 36 ms 36 ms 
6 usa.gw.au (139.130.29.5) 37 ms 36 ms 38 ms   
7 usa-au.gw.au (203.62.255.1) 233 ms 252 ms 264 ms  
8 * * t3-0.enss144.t3.nsf.net (192.203.230.253) 224 ms 
9 140.222.8.4 (140.222.8.4) 226 ms 236 ms 258 ms 
10 t3-3.cnss25.Chicago.t3.ans.net (140.222.25.4) 272 ms 293 ms 266 ms 
11 t3-0.cnss40.Cleveland.t3.ans.net (140.222.40.1) 328 ms 270 ms 300 ms 
12 t3-1.cnss48.Hartford.t3.ans.net (140.222.48.2) 325 ms 355 ms 289 ms 
13 t3-2.cnss32.New-York.t3.ans.net (140.222.32.3) 284 ms 319 ms 347 ms 
14 t3-1.cnss56.Washington-DC.t3.ans.net (140.222.56.2) 352 ms 299 ms 305 ms 
15 t3-1.cnss72.Greensboro.t3.ans.net (140.222.72.2) 319 ms 344 ms 310 ms 
16 mf-0.cnss75.Greensboro.t3.ans.net (140.222.72.195) 343 ms 320 ms * 
17 cnss76.Greensboro.t3.ans.net (192.103.68.6) 338 ms 319 ms 355 ms 
18 192.103.68.50 (192.103.68.50) 338 ms 330 ms 330 ms 
19 rtp5-gw.ncren.net (128.109.135.254) 357 ms 361 ms * 
20 * rtp2-gw.ncren.net (128.109.70.253) 359 ms 334 ms 
21 128.109.13.2 (128.109.13.2) 374 ms 411 ms 451 ms 
22 * calypso-2.oit.unc.edu (198.86.40.81) 418 ms 415 ms 
 

There are now a number of visual versions of traceroute, 
http://www.visualroute.com/, is one of them 

Exercises 

15.3. In the above example examine the times between machines 6 & 7. Why 
do you think it takes so long to get from machine 6 to machine 7?  

Conclusions 
Network protocols are known for consisting of a number of layers.  
Connecting a Linux box to a network also has a number of layers 

• Select the appropriate hardware 

• Compile an appropriate kernel 

• Configure the network devices with appropriate settings 

• Configure the DNS and routing services 

• Configure any additional networking services 

As with network protocol layers, the layers in setting up a network connection 
also hide detail.  For example, once you have connected the hardware and 
recompiled the kernel configuring network devices is very similar regardless of 
the networking hardware being used. 



85321, Systems Administration Chapter 15, Networks: The Connection 

David Jones (20.01.00) Page 412 

Review Questions 
15.1  

"The Net", a movie with Sandra Bullock, contained images of a few screens 
with what appeared to be IP addresses.  Some of those supposed IP addresses 
are listed below.  Are they IP addresses?  If not, why not? 

1. 128.234.15 

2. 23.75.345.200 

3. 75.258.34.164    

15.2 

What UNIX commands would you use for the following tasks  

1. checking a domain name server for the IP address of the machine 
www.seven.com.au   

2. finding out whether or not your computer can access, via the network, 
another machine,  

3. finding out what machines information passes through as it goes from 
your machine to www.whitehouse.gov   

4. configure a network interface,  

5. display the routing table of your UNIX machine,  

6. display the ethernet address of your UNIX machine.  

15.3  

Explain the relevance of each of the following  

1. /etc/hosts   

2. /etc/resolv.conf   

3. /etc/networks   

4. /etc/rc.d/rc.inet1   

5. a gateway  

15.4 

It has been suggested that the “layering” of the network configuration steps 
means that configuring the network devices for a PPP connection will be 
similar to that for an ethernet connection.  Refer to the appropriate manual 
pages and HOWTOs and compare the steps involved in making a PPP 
connection.  For example 

• Where is the device configuration information stored? 

• How is the network device configured? 

• Are the any similarities or differences with network configuratio? 



85321, Systems Administration Chapter 15, Networks: The Connection 

David Jones (20.01.00) Page 413 

• What about DNS and routing configuration, is there any similarities? 

15.5 

You’ve just started administering a new Linux computer and executed the 
following three ifconfig  commands to discover information about the 
configuration of the network devices on this machine.   

Using this output answer the following questions (HINT: remember the 
discussion of IP aliasing earlier in this chapter?) 

1. List the network and host portions of the IP address for each of the 
network devices listed in the output of these commands.  

What does the output of these commands tell you about the network 
configuration of these machines?  

What would the /proc/net/dev file for this system look like? 

Can you see what is wrong with the configuration of the networking of this 
system? 

[root@cq-pan logs]# /sbin/ifconfig eth0  
eth0 Link encap:Ethernet HWaddr 00:60:97:3A:AA:85 
inet addr:138.77.37.37 Bcast:138.77.37.255 Mask:255.255.255.0 
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 
RX packets:61183404 errors:59 dropped:59 overruns:0 
TX packets:77722967 errors:0 dropped:0 overruns:0 
Interrupt:9 Base address:0xff00  
 
[root@cq-pan logs]# /sbin/ifconfig eth0:1  
eth0:1 Link encap:Ethernet HWaddr 00:60:97:3A:AA:85 
inet addr:138.77.37.59 Bcast:138.77.37.255 Mask:255.255.255.0 
UP BROADCAST RUNNING MTU:1500 Metric:1 
RX packets:10894 errors:0 dropped:0 overruns:0 
TX packets:210 errors:0 dropped:0 overruns:0 
 
[root@cq-pan logs]# /sbin/ifconfig eth0:2  
eth0:2 Link encap:Ethernet HWaddr 00:60:97:3A:AA:85 
inet addr:138.77.38.60 Bcast:138.77.38.255 Mask:255.255.255.0 
UP BROADCAST RUNNING MTU:1500 Metric:1 
RX packets:481325 errors:0 dropped:0 overruns:0 
TX packets:259 errors:0 dropped:0 overruns:0 

 



85321, Systems Administration Chapter 16: Network Applications 

David Jones (20.01.00)  Page 414 

Chapter 
Network Applications 

Introduction  
The previous chapter looked at how you connect a Linux box to a network and 
provide some basic services.  That is not enough information to produce a 
useful Linux machine.  You need to know how to configure and manage the 
higher level network services which are expected today including print/file 
sharing, electronic mail, File Transfer Protocol, World-Wide Web and others.  

That’s where this chapter comes in.  It aims to provide an overview of how 
network applications work,how they operate and how they are configured.  
There is no way a single chapter can provide this information about all the 
available network applications.  There are hundreds of them and each one can 
be quite complex.  Instead this chapter focuses on the fundamentals, the 
concepts which are common to all these applications.  If you are comfortable 
with this knowledge then learning how to configure a new application is quite 
simple.  The chapter closes with a detailed look at some specific network 
services including file/print sharing, messaging (email) and the World-Wide 
Web.   

Other  Resources 
Other available resources which examine similar material include 

• HOW-TOs 
Firewall, IPCHAINS, Intranet Server (though it is a little dated), Mail, Mail 
User, NFS, NIS, Networking Overview (gives a very good overview of 
topics related to both networking chapters), SMB, VPN, Virtual Services, 
WWW, Apache SSL PHP/FI 

• Mini HOW-TOs 
Apache SSL PHP/FI, Automount, Cipe+Masquerading, ISP Connectivity, 
NFS-Root, NFS-Root-Client, Qmail+MH, Remove Boot, Remote X Apps,  
Sendmail Address Rewrite, Sendmail+UUCP, Secure POP via SSH. 

• LAME 
Sections on DNS Configuration, sections on Windows and Mac  file and 
print sharing, NFS section, configuring the Apache Web server, 
configuring the Squid HTTP caching proxy, Configuring sendmail. 

• Apache website http://www.apache.org/ 

• Samba website http://www.samba.org 

• The RedHat reference and getting started guide has additional information 
about many of these topics. 



85321, Systems Administration Chapter 16: Network Applications 

David Jones (20.01.00)  Page 415 

An expanded an up to date list of resources can be found on the 85321 website. 

How it all works 
So what is the common details about all the network applications.  How do 
they work?  This section provides a general answer to these questions. 

The provision of network services like FTP, telnet, e-mail and others relies on 
these following components  

• network ports, 
Network ports are the logical (that means that ports are an imaginary 
construct which exists only in software) connections through which the 
information flows into and out of a machine. A single machine can have 
thousands of programs all sending and receiving information via the 
network at the same time. The delivery of this information to the right 
programs is achieved through ports.   Generally each program must have its 
own port. 

• network daemons, 
Network daemons are the programs running on the network server 
machines that sit listening at pre-defined ports waiting for connections 
from other hosts. These  daemons wait for a request, perform some action 
and send a response back to the program that requested the action.  The 
program which requested the action is a network client. 

• network clients, and 
Users access network services using client programs. Example network 
client programs include Netscape, Eudora and the ftp command on a 
UNIX machine.  The client programs turn user requests (e.g. typing in the 
URL http://www.linux.org/ ) into a request which is sent to a network 
daemon.  The requests and responses which flow between network 
daemons and network clients must take part in some agreed upon format, a 
network protocol. 

• network protocols. 
Network protocols specify how the network clients and servers 
communicate. They define the small "language" which both use for 
communication.  

The following sections of this chapter go into more detail about each of these 
sections. 

Ports  
All network protocols, including http ftp SMTP , use either TCP or UDP to 
deliver information.  TCP and UDP are referred to as transport protocols.  
Each transport protocol has its own characteristics and which one is used 
depends on the type of communication which occurs. 

However, one thing is common between both transport protocols.  The 
addresses they use to identify the source (where they are coming from) and the 
destination (where they are going to).  Obviously the first component of the 



85321, Systems Administration Chapter 16: Network Applications 

David Jones (20.01.00)  Page 416 

source/destination address is the IP address, this identifies the computer.  The 
next component is the port number on that computer.. Every TCP or UDP 
header contains two 16 bit numbers that are used to identify the source port 
(the port through which the information was sent) and the destination port (the 
port through which the information must be delivered.)  The IP address is 
stored in the IP header. 

Since port numbers are 16 bit numbers, there can be approximately 64,000 (216 
is about 64,000) different ports. Some of these ports are used for predefined 
purposes. The ports 0-256 are used by the network servers for well known 
Internet services (e.g. telnet, FTP, SMTP). Ports in the range from 256-1024 
are used for network services that were originally UNIX specific. Network 
client programs and other programs should use ports above 1024.  

Table 16.1 lists some of the port numbers for well known services.  

Port number Purpose 

20 ftp-data   

21 ftp   

23 telnet   

25 SMTP (mail)  

80 http  (WWW)  

119 nntp  (network news)  

T a b l e  1 6 . 1  
R e s e r v e d  P o r t s   

This means that when you look at a TCP/UDP packet and see that it is 
addressed to port 25 then you can be sure that it is part of an email message 
being sent to a SMTP server.  A packet destined for port 80 is likely to be a 
request to a Web server. 

Reserved ports 

So how does the computer know which ports are reserved for special services?  
On a UNIX computer this is specified by the file /etc/services . Each line in 
the services  file is of the format  

service-name port/protocol aliases 

Where service-name  is the official name for the service, port is the port 
number that it listens on, protocol is the transport protocol it uses and 
aliases  is a list of alternate names.  

The following is an extract from an example /etc/services  file. Most 
/etc/services  files will be the same, or at least very similar.  

echo 7/tcp 
echo 7/udp 
discard 9/tcp sink null 
discard 9/udp sink null 
systat 11/tcp users 
daytime 13/tcp 
daytime 13/udp 



85321, Systems Administration Chapter 16: Network Applications 

David Jones (20.01.00)  Page 417 

ftp-data 20/tcp 
ftp 21/tcp 
telnet 23/tcp 
smtp 25/tcp mail 
nntp 119/tcp usenet # Network News Transfer 
ntp 123/tcp # Network Time Protocol 

You should be able to match some of the entries in the above example, or in 
the /etc/services file on your computer, with the entries in Table 16.1. 

Exercises 

16.1. Examine your /etc/services  file and discover the port on which the 
following protocols are used  
http   
ssh   
pop3   

Look at ports, netstat 

The netstat command can be used for a number of purposes including 
looking at all of the current active network connections. The following is an 
example of the output that netstat can produce (it’s been edited to reduce the 
size).  

[david@cq-pan:~]$ netstat -a  
Active Internet connections (including servers) 
Proto Recv-Q Send-Q Local Address          Fo reign Address        (State) User                                                                           
root 
tcp        1   7246 cq-pan.cqu.edu.au:www  lore.cs.purdue.e:42468 CLOSING root 
tcp        0      0 cq-pan.cqu.edu.au:www  sdlab142.syd.cqu.:1449 CLOSE   root 
tcp        0      0 cq-pan.cqu.edu.au:www  dialup102-4-9.swi:1498 FIN_WAIT2 root 
tcp        0  22528 cq-pan.cqu.edu.au:www  205.216.78.103:3058    CLOSE   root 
tcp        1  22528 cq-pan.cqu.edu.au:www  barney.poly.edu:47547  CLOSE   root 
tcp        0      0 cq-pan.cqu.edu.au:www  eda.mdc.net:2395       CLOSE   root 
tcp        0  22528 cq-pan.cqu.edu.au:www  eda.mdc.net:2397       CLOSE   root 
tcp        0      0 cq-pan.cqu.edu.au:www  cphppp134.cyberne:1657 FIN_WAIT2 root 
tcp        0  22528 cq-pan.cqu.edu.au:www  port3.southwind.c:1080 CLOSE   root  
tcp        0      9 cq-pan.cqu.edu.:telnet dinbig.cqu.edu.au:1107 ESTABLISHED root          
tcp        0      0 cq-pan.cqu.edu.au:ftp  ppp2-24.INRE.ASU.:1718 FIN_WAIT2 root    

Explanation  

Table 16.2 explains each column of the output.  Taking the column 
descriptions from the table, it is possible to make some observations  

• All of the entries, but the last two, are for people accessing this machine’s 
(cq-pan.cqu.edu.au ) World-Wide Web server. 
You can say this because of cq-pan.cqu.edu.au:www.  This tells us 
that the port on the local machine is the www port (port 80).  

• In the second last entry, I am telneting to cq-pan from my machine at 
home. 
At that stage my machine at home was called dinbig.cqu.edu.au.  
The telnet client is using port 1107 on dinbig to talk to the telnet 
daemon. 

• the last entry is someone connecting to CQ-PAN’s ftp server,  



85321, Systems Administration Chapter 16: Network Applications 

David Jones (20.01.00)  Page 418 

• the connection for the first entry is shut down but not all the data has been 
sent (this is what the CLOSING state means). 
This entry, from a machine from Purdue University in the United States, 
still has 7246 bytes still to be acknowledged  

 

Column name Explanation 

Proto the name of the transport protocol (TCP or UDP) being used  

Recv-Q the number of bytes not copied to the receiving process  

Send-Q the number of bytes not yet acknowledged by the remote host  

Local 
Address 

the local hostname (or IP address) and port of the connection  

Foreign 
Address 

the remote hostname (or IP address) and remote port  

State the state of the connection (only used for TCP because UDP doesn’t 
establish a connection), the values are described in the man page  

User some systems display the user that owns the local program serving the 
connection  

T a b l e  1 6 . 2  
C o l u m n s  f o r  n e t s t a t   

Network daemons  
The /etc/services  file specifies which port a particular protocol will listen 
on. For example SMTP (Simple Mail Transfer Protocol, the protocol used to 
transfer mail between different machines on a TCP/IP network) uses port 25. 
This means that there  should be a  network daemon that listens for SMTP 
connections on port 25 and knows what to do with those connections. 

This begs some questions  

• How do we know which program acts as the network daemon for which 
protocol?  

• How is that program started?  

How network daemons start  

There are two methods by which network daemons are started  

• by startup scripts 
Daemons started in this manner will show up in a ps list of all the current 
running processes. These daemons are always running, waiting for a 
connection on the specified port. This means that the daemon is using up 
system resources (RAM etc) because it is always in existence but it also 
means that it is very quick to respond when requests arrive for their 
services.  



85321, Systems Administration Chapter 16: Network Applications 

David Jones (20.01.00)  Page 419 

• by the inetd  daemon 
The inetd  daemon listens at a number of ports and when information 
arrives, it starts the appropriate network daemon for that port. Which 
daemon, for which port, is specified in the configuration file 
/etc/inetd.conf .  

Starting a network daemon via inetd is usually done when there aren’t many 
connections for that daemon. If a network daemon is likely to get a large 
number of connections (a busy mail or WWW daemon for example) the 
daemon for that service should be started in the system startup files and always 
listen on the port.  

The reason for this is overhead. Using inetd takes longer because for every 
connection it needs to first create a new process (and we’ve seen already that 
creating new processes can be a relatively expensive process).  When the 
daemon is already running and listening to the port it simply starts handling the 
request. 

Of course the draw back with starting daemons in the startup scripts is that 
they are always there consuming RAM and other resources.  Even if they aren’t 
being used. 

inetd 

The /etc/inetd.conf  file specifies the network daemons that the inetd 
daemon should execute. The inetd.conf file consists of one line for each 
network service using the following format (Table 16.3 explains the purpose of 
each field). 

service-name socket-type protocol flags user daemon_program args 

Field Purpose 

service-name   The service name, the same as that listed in /etc/services  

socket-type   The type of data delivery services used (we don’t cover this). 
Values are generally stream for TCP, dgram for UDP and raw 
for direct IP  

protocol   the transport protocol used, the name matches that in the 
/etc/protocols  file  

flags   how inetd  is to behave with regards this service (not explained 
any further)  

user   the username to run the daemon as, usually root but there are 
some exceptions, generally for security reasons  

daemon_program   the full path to the program to run as the daemon  

args   command line arguments to pass to the daemon program  

T a b l e  1 6 . 3  
F i e l d s  o f  / e t c / i n e t d . c o n f  

The following is an excerpt from the /etc/inetd.conf on a RedHat Linux 
machine.  Notice that some of the entries have been commented out.  This 



85321, Systems Administration Chapter 16: Network Applications 

David Jones (20.01.00)  Page 420 

means that these services will not be operational.  No daemon listening for 
connections means the service won’t work. 

shell   stream  tcp     nowait  root      /usr/sbin/tcpd  in.rshd 
login   stream  tcp     nowait  root      /usr/sbin/tcpd  in.rlogind 
#exec   stream  tcp     nowait  root      /usr/sbin/tcpd  in.rexecd 
#comsat dgram   udp     wait    root      /usr/sbin/tcpd  in.comsat 
talk    dgram   udp     wait    nobody.tty      /usr/sbin/tcpd  in.talkd 
ntalk   dgram   udp     wait    nobody.tty      /usr/sbin/tcpd  in.ntalkd 

How it works  

Whenever the machine receives a request on a port (on which the inetd 
daemon is listening on), the inetd daemon decides which program to execute 
on the basis of the /etc/inetd.conf  file.  

Exercises 

16.2. top is a UNIX command which will give you a progressive display of 
the current running processes.  Use top to observer what happens when 
a network daemon is started.  For example, start top and then try to 
telnet or ftp to your machine.  Can you see the appropriate daemon 
start?  (Remember you should be able to use the hostname localhost for 
your own machine even if you are not on a network.) 

16.3. What happens if you change the /etc/inetd.conf  file? Does the 
inetd  daemon pick up the change automatically? How would you 
notify inetd  of the change?  
Note: you WILL have to experiment to find out the answer to this 
question. It isn’t included in the study material. A suggested experiment 
is the following: try the command telnet localhost , this should 
cause inetd  to do some work; if it works, comment out the entry in the 
inetd.conf  file for the telnet service try the first command again.  
Does it work? If it does then inetd hasn’t seen the change. How do you 
tell it?  

Network clients  
All of you will have used a number of network client programs. If you are 
reading this online you may well be using a WWW browser. It’s a network 
client program.  Checking your mail makes use of a network client.  A network 
client is simply a program (whether it is text based or a GUI program) that 
knows how to connect to a network daemon, pass requests to the daemon and 
then receive replies.   

The telnet client  

By default when you use the command telnet jasper,  the telnet  client 
program will attempt to connect to port 23 of the host jasper (23 is the 
telnet  port as listed in /etc/services ).  



85321, Systems Administration Chapter 16: Network Applications 

David Jones (20.01.00)  Page 421 

It is possible to use the telnet client program to connect to other ports. For 
example the command telnet jasper 25  will connect to port 25 of the 
machine jasper .  

The usefulness and problem with this will be discussed on the next couple of 
pages.  

Network protocols  
Each network service generally uses its own network protocol that specifies 
the services it offers, how those services are requested and how they are 
supplied. For example, the ftp protocol defines the commands that can be 
used to move files from machine to machine. When you use a command line 
ftp  client, the commands you use are part of the ftp protocol.  

Request for comment (RFCs)  

For protocols to be useful, both the client and daemon must agree on using the 
same protocol.  If they talk different protocols then no communication can 
occur.  The standards used on the Internet, including those for protocols, are 
commonly specified in documents called Request for Comments (RFCs). (Not 
all RFCs are standards). Someone proposing a new Internet standard will write 
and submit an RFC. The RFC will be distributed to the Internet community 
who will comment on it and may suggest changes. The standard proposed by 
the RFC will be adopted as a standard if the community is happy with it.  

Protocol RFC 

FTP 959 

Telnet 854 

SMTP 821 

DNS 1035 

TCP 793 

UDP 768 

T a b l e  1 6 . 4  
R F C s  f o r  P r o t o c o l s  

Table 16.4 lists some of the RFC numbers which describe particular protocols.  
RFCs can and often are very technical and hard to understand unless you are 
familiar with the area (the RFC for ftp is about 80 pages long).  

Exercises 

16.4. Take a look at http://www.faqs.org/  the maintain a collection of FAQs 
from Usenet news and also provide access to the RFCs.  Use this site to 
view the RFC for SMTP.  Take a look through it to get an idea of what 
is there.  The direct URL you want is 
http://www.faqs.org/rfcs/rfc821.html (at least at the time of writing). 



85321, Systems Administration Chapter 16: Network Applications 

David Jones (20.01.00)  Page 422 

Text based protocols  

Some of these protocols smtp ftp nntp http  are text based. They make use 
of simple text-based commands to perform their duty. Table 16.5 contains a 
list of the commands that smtp understands. smtp (simple mail transfer 
protocol) is used to transport mail messages across a TCP/IP network.  

 

Command Purpose 

HELO hostname startup and give your hostname  

MAIL FROM: sender-address mail is coming from this address  

TO: recipient-address please send it to this address  

VRFY address does this address actually exist (verify)  

EXPN address expand this address  

DATA I’m about to start giving you the body of the mail 
message  

RSET oops, reset the state and drop the current mail 
message  

NOOP do nothing  

DEBUG [level] set debugging level  

HELP give me some help please  

QUIT close this connection  

T a b l e  1 6 . 5  
S M T P  c o m m a n d s   

How it works  

When transferring a mail message a client (such as Eudora) will connect to the 
SMTP daemon (on port 25). The client will then carry out a conversation with 
the daemon using the commands from Table 16.5.  Since these commands are 
just straight text you can use telnet to simulate the actions of an email 
client.  

Doing this actually has some real use. I often use this ability to check on a mail 
address or to expand a mail alias. The following shows an example of how I 
might do this.  

The text in bold is what I’ve typed in. The text in italics are comments I’ve 
added after the fact.  

beldin:~$ telnet localhost 25  
Trying 127.0.0.1... 
Connected to localhost. 
Escape character is ’^]’. 
220-beldin.cqu.edu.au Sendmail 8.6.12/8.6.9 ready at Wed, 1 May 1996 
13:20:10 +1 000 
220 ESMTP spoken here 
vrfy david  check the address david 



85321, Systems Administration Chapter 16: Network Applications 

David Jones (20.01.00)  Page 423 

250 David Jones <david@beldin.cqu.edu.au 
vrfy joe  check the address joe 
550 joe... User unknown  
vrfy postmaster  check the address postmaster 
250 <postmaster@beldin.cqu.edu.au  
expn postmaster  postmaster is usually an alias, who is it really?? 
250 root <postmaster@beldin.cqu.edu.au 

Since 1996, when the above exercise was performed, the Internet has changed 
a lot.  Someof the features shown above may not be supported by some mail 
servers due to concerns about security and mail spamming (where you are sent 
email you didn’t ask for from people you don’t know, usually trying to get you 
to give them money). 

Mail spoofing 

This same approach can be used to spoof mail, that is, send email as someone 
you are not. This is one of problems with Internet mail. The following is an 
example of how it’s done.  

bash$ telnet aldur 25 connect to the smtp port (see /etc/services) 
Trying 138.77.36.29 ... 
Connected to aldur.cqu.edu.au. 
Escape character is ’^]’. 
220 aldur.cqu.edu.au Amix Smail3.1.28.1 #2 ready at Sun, 28 Aug 94 
12:04 EST 
helo aldur tell the machine who I am (the name of another machine not a user) 
250 aldur.cqu.edu.au Hello aldur 
mail from: god@heaven.com this is who the mail is coming from 
250 <god@heaven> ... Sender Okay 
data I want to enter some data which is the message  
503 Need RCPT (recipient) can’t do that yet, must tell it who to send message to 
rcpt: david@aldur  
500 Command unrecognized oops, typed it wrong 
rcpt to: david@aldur  
250 <david@aldur> ... Recipient Okay 
data  
354 Enter mail, end with "." on a line by itself 
You have been a naughty boy type in the message 
.  
250 Mail accepted 
quit bye, bye 
221 aldur.cqu.edu.au closing connection 
Connection closed by foreign host. 

There are methods which can be used to identify email sent in this way. 

Exercises 

16.5. Using the "telnet " approach connect to an ftp daemon and a http 
daemon. What commands do they recognise? You might want to refer 
to the RFCs for those protocols to find out. 



85321, Systems Administration Chapter 16: Network Applications 

David Jones (20.01.00)  Page 424 

Secur ity 
Putting your computer on a network, especially the Internet, makes it 
accessible to a lot of other people and not all of those people are nice.  It is 
essential that you put in place some sort of security to protect your system 
from these nasty people.  The next chapter takes a more indepth look at 
security.  In this section we examine some of the steps you can take to increase 
the security of your system. 

TCPWrappers/tcpd  

The following are entries from two different /etc/inetd.conf  files. Both are 
the entries dealing with the telnet service. The second entry is from a 
"modern" Linux machine, the first is from an earlier UNIX machine.  

telnet stream tcp nowait root /usr/sbin/in.telnetd in.telnetd 
telnet stream tcp nowait root /usr/sbin/tcpd  /usr/sbin/in.telnetd 

The difference  

Do you notice the difference? The program being run on the Linux machine is 
/usr/sbin/tcpd . If you examine the entries in a Linux machine’s 
/etc/inetd.conf  you will find that this program is executed for all (almost) 
network services.  

tcpd  is the public domain program TCPWrappers that comes standard on all 
Linux machines. It is a special daemon that provides some additional services 
including added security, access control and logging facilities for all network 
connections. TCPWrappers works by being inserted between the inetd 
daemon and the various network daemons that are executed by inetd.  

Figures 16.1 and 16.2 demonstrate the difference.  

 

F i g u r e  1 6 . 1  
i n e t d  b y  i t s e l f   

 

 



85321, Systems Administration Chapter 16: Network Applications 

David Jones (20.01.00)  Page 425 

F i g u r e  1 6 . 2  
i n e t d  w i t h  t c p d   

tcpd features  

tcpd works as follows 

• a request for a particular network request is received, 

• the configuration of inetd is such that tcpd is executed rather than the 
actual daemon for this request, 

• tcpd logs the request via syslog , 
On RedHat each connection is logged into the file /var/log/secure.  
Information stored includes the time it was made, the host trying to make 
the connection and the name of the network service being requested. An 
example entry looks like  

May  1 12:13:46 beldin in.telnetd[684]: connect from localhost 

• tcpd then performs a number of checks, 
These checks make use of some the extra features of tcpd including  

• pattern-based access control.   
This allows you to specify which hosts are allowed (or not) to use a 
particular network service.  You can use this feature to restrict who can 
make use of your network services.  tcpd also allows you to execute UNIX 
commands when a particular type of connection occurs.   

Exercises 

16.6. The manual page for tcpd says that more information about the access 
control features of tcpd can be found on the hosts_access(5) 
manual page.  What command would you use to view this page? 

 

• hostname verification, 
Some of the network protocols rely on hostnames for authentication.  For 
example, you may only be able to use the rsh command if your computer 
is called beldin.cqu.edu.au.  It is possible for people to setup 
computers that will pretend to be another hostname.  tcpd offers a feature 
which will verify that a host is really who they say they are. 

• protection against host address spoofing. 
It is also possible to spoof an IP address.  That is, packets being sent from 
machine are modified to look as if they are being sent from another, 



85321, Systems Administration Chapter 16: Network Applications 

David Jones (20.01.00)  Page 426 

trusted, machine.  tcpd offers a feature to detect and reject any 
connections of this type.  

Exercises 

16.7. Using tcpd how would you achieve the following 
– Configure your machine so there are no network services available.   
– Once you've done this attempt to telnet and ftp to your machine. 
Keep this tcpd configuration for all the exercises in this group. 

16.8. What effect would the previous question have on the ability for your 
machine to receive email? 

16.9. Modify your tcpd configuration to allow the receipt of email. 

16.10. Try connecting to the Web daemon on your machine.  Assuming you 
have a standard RedHat installation you should still be able to connect 
to the Web daemon.  Why can you still do this?  Shouldn't your tcpd 
configuration have stopped this? 

Other methods for securing a network connection are discussed in the security 
chapter. 

What’s an Intranet?  
Intranets are the latest buzzword in the computer industry. The buzzword 
makers have finally realised the importance of the Internet (and the protocols 
with which it was constructed) and have started adopting it for a number of 
purposes. An intranet is basically a local area network used by an organisation 
that uses the Internet protocols to provide the services normally associated 
with a LAN plus offering Internet services (but not necessarily Internet 
access).  

Services on an Intranet  

The following is a list of the most common services that an Intranet might 
supply (by no means all of them). This is the list of services we'll discuss in 
more detail in this chapter. The list includes  

• file sharing, 
The common ability to share access to applications and data files. It's much 
simpler to install one copy of an application on a network daemon than it is 
to install 35 copies on each individual PC.  

• print sharing, and 
The ability for many different machines to share a printer. It is especially 
economically if the printer is an expensive, good quality printer.  

• electronic mail. 
Sometimes called messaging.  Electronic mail is fast becoming an essential 
tool for most businesses. 

• Web serving 



85321, Systems Administration Chapter 16: Network Applications 

David Jones (20.01.00)  Page 427 

File and pr int shar ing  
There is a famous saying in the computing field.  

The nice thing about standards is that there are so many to 
choose from.  

This statement is especially true in the area of sharing printers and files in a 
local area network. Some of the different protocols are outlined in Table 16.6 
which also describes the origins of each protocol.  

 

Name Description 

Server Message 
Block 
(SMB)  

The protocol used by Windows for Workgroups, 95 and NT and 
OS/2 and a couple of others. Becoming the protocol with the 
largest number of clients.  

Netware  Netware is the term used to describe Novell’s network OS. 
Includes the protocols IPX and NCP (amongst others). A very 
popular, but possibly dying, network operating system (NOS).  

Appletalk  The networking built-in to all Macintosh computers. Many 
Macs now use MacTCP which allows them to "talk" TCP/IP.  

Network File System 
(NFS)  

The traditional UNIX based file sharing system. NFS clients 
and daemons are available for most platforms.  

T a b l e  1 6 . 6  
P r o t o c o l s  f o r  s h a r i n g  f i l e s  a n d  p r i n t e r s   

The "native" form of file sharing on a UNIX machine is NFS.  If you wanted to 
share files between UNIX machines, NFS would be the choice.  

Due to a number of free software packages, Linux, and most versions of 
UNIX, can actually act as a server for all of the protocols listed above. Due to 
the popularity of the Windows family of operating systems, the following will 
examine the SMB protocols. 

Samba  

Samba is a piece of software, originally written by Andrew Tridgell (a resident 
of Canberra), and now maintained by a large number of people from 
throughout the world. Samba allows a UNIX machine to act as a file and print 
server for clients running Windows for Workgroups, Windows 95, NT and a 
couple of other operating systems.  

The combination of Linux and Samba is possibly the cheapest way of 
obtaining a server for a Intranet.    

The following is a very simple introduction to how you might use Samba on a 
RedHat machine.  This process is much simpler on RedHat as Samba comes 
pre-configured.  The readings down below provide much more information 
about Samba. 



85321, Systems Administration Chapter 16: Network Applications 

David Jones (20.01.00)  Page 428 

The configuration file for Samba is /etc/smb.conf.  An entry in this 
configuration file which allows a user’s home directory to be exported to SMB 
clients is the following 

[homes] 
   comment = Home Directories 
   browseable = no 
   read only = no 
   preserve case = yes 
   short preserve case = yes 
   create mode = 0750 

If your Linux machine happens to be on a network and you have a Win95/NT 
or even 3.11 machine on the same network, you should be able to connect to 
your home directory from that Windows machine using the standard approach 
for mapping a network drive.  Figure 16.3 is the dialog box on a Windows 95 
machine. 

F i g u r e  1 6 . 3  
D i a l o g  b o x  f o r  m a p p i n g  a  n e t w o r k  d r i v e .  

In this example, the name of my Linux computer is beldin and my username 
on beldin is david.  Once connected, I can now read and write files from 
my home directory from within Windows. 

Chances are most of you will not have a local area network (LAN) at home 
that has your RedHat Linux machine and another Windows machine 
connected.  This makes it difficult for you to recreate the above example.  
Luckily Samba comes with a program called smbclient.  smbclient is a 
UNIX program which allows you to connect to Samba shares.  This means 
when you use smbclient you are simulating what would happen if you were 
using a Windows machine.  The following is an example of using 
smbclient to connect to the same share as in the Windows example above. 

[david@beldin david]$ smbclient ’\\beldin\david’ 
Added interface ip=138.77.36.28 bcast=138.77.36.255 nmask=255.255.255.0 
Unknown socket option TCP_NODELAY 
Server time is Fri Feb  6 14:04:50 1998 
Timezone is UTC+10.0 
Password:  
Domain=[WORKGROUP] OS=[Unix] Server=[Samba 1.9.17p4] 
security=user 
smb: \> help 
ls             dir            lcd            cd             pwd             
get            mget           put            mput           rename          
more           mask           del            rm             mkdir           
md             rmdir          rd             pq             prompt          
recurse        translate      lowercase      print          printmode       
queue          qinfo          cancel         stat           quit            
q              exit           newer          archive        tar             
blocksize      tarmode        setmode        help           ?               



85321, Systems Administration Chapter 16: Network Applications 

David Jones (20.01.00)  Page 429 

!               
smb: \> ls *.pdf 
  ei010106.pdf                             129777  Mon Jan 26 12:34:06 1998 
  ei020102.pdf                             229292  Mon Jan 26 12:34:54 1998 
  ei020103.pdf                             291979  Mon Jan 26 12:35:22 1998 
 
                50176 blocks of size 16384. 2963 blocks available 
smb: \> 

Once you connect with smbclient you see the smbclient prompt at 
which you can enter a number of commands.  This acts a bit like a command-
line ftp prompt. 

Rather than use the fairly cumbersome smbclient interface to SMB drives 
Linux’s virtual file system comes to the rescue.  With the comment smbmount 
you can connect SMB drives from Windows machines to your Linux machine 
and use them as you would any other drive. 

Exercise 

16.11. Check that Samba is installed and configured on your system.  Use 
smbclient or a Windows machine to see if you can connect to your 
home directory. 

16.12. This chapter suggests that any network application can be broken down 
into ports, daemons, clients and protocols.  Referring to the above 
discussion and other available documentation what are the ports, 
daemons, clients and protocols involved in using Samba on a Linux 
machine. 

Email  
Electronic mail, at least on the surface, looks fairly easy. However there are a 
number of issues that make configuring and maintaining Internet electronic 
mail a complex and occasionally frustrating task. Examining this task in-depth 
is beyond the scope of this subject. Instead, the following pages will provide 
an overview of the electronic mail system.  

Email components  

Programs that help send, reply and distribute email are divided into three 
categories  

• mail user agents (MUA), 
These are the programs that people use to read and send email.  Common 
MUAs include Eudora, Netscape (it has a mail and news reader as well as a 
Web browser) and text-based tools such as elm or pine.  MUAs allow a 
user to read and write email. 

• mail delivery agents (MDA), 
Once a mail message is delivered to the right computer, the MDA is 
responsible for placing it into the appropriate mail file. 

• mail transport agents (MTA). 
Perform a number of tasks including some delivery, forwarding of email to 



85321, Systems Administration Chapter 16: Network Applications 

David Jones (20.01.00)  Page 430 

other MTAs closer to the final recipient and some address translation. 
  

Figure 16.4 provides an overview of how these components fit together.  

F i g u r e  1 6 . 4  
A n  o v e r v i e w  o f  t h e  m a i l  s y s t e m   

The following is a brief description of how email is delivered for most people 

• Mail daemon 
Most people will have an account on a mail server which will be running 
UNIX, Windows NT or some other operating system.  At a minimum, the 
user’s account will include a mail file.  All email delivered for that user is 
appended onto the end of that mail file. 

• Remote mail client 
Reading and writing mail for most people is done using a MUA like 
Eudora or Netscape on a remote mail client.  This "remote mail client" is 
the user’s normal computer they use for normal applications.  The client 
mail computer will retrieve the user’s mail from the mail server using a 
protocol such as POP or IMAP (see Table 16.6).  Sending email will be via 
the SMTP protocol to the mail server’s SMTP daemon (sendmail if it’s 
the server is a UNIX computer). 

Email Protocols  

Table 16.7 lists some of the common protocols associated with email and 
briefly describes their purpose.  



85321, Systems Administration Chapter 16: Network Applications 

David Jones (20.01.00)  Page 431 

 

Protocol Description 

SMTP Simple Mail Transport Protocol, the protocol used to transport mail 
from one Internet host to another  

POP Post Office Protocol, defines a method by which a small host can 
obtain mail from a larger host without running a MTA (like 
sendmail). Described in RFCs 1725 1734  

IMAP Internet Message Access Protocol, allows client mail programs to 
access and manipulate electronic mail messages on a server, 
including the manipulation of folders. Described in RFCs 1730, 
1731.  

MIME Multipurpose Internet Mail Extensions, defines methods for sending 
binary data such as Word documents, pictures and sounds via 
Internet email which is distributed as text. Described in RFCs 1521 
1522 and others.  

PEM Privacy-Enhanced Mail, message encryption and authentication 
procedures, proposed standard outlined in RFCs 1421, 1422 and 
1423  

Format of text 
messages 

The standard format of Internet email which is described in RFC822 

T a b l e  1 6 . 7  
P r o t o c o l s  a n d  s t a n d a r d s  a s s o c i a t e d  w i t h  E m a i l   

Unix mail software 

Your RedHat Linux machine will include the following software related to 
email 

• sendmail 
sendmail is the UNIX MTA.  It may well be one of the most difficult 
and hated pieces of software in the world.  However, recent versions have 
solved many of its problems.  sendmail is the SMTP daemon on most 
UNIX machines.  That is it is the server that handles SMTP requests. 

• popd 
The pop daemon is contacted by MTAs such as Eudora when they wish to 
transfer a user’s email from the server onto the client. 

• imapd 
The imap daemon may not be installed on all machines but it is distributed 
with RedHat.  imapd responds to MTAs which use imap to transfer email 
from the server to the client.  The readings below contain a pointer to a 
document which describes the differences between IMAP and POP. 

• various mail clients 
A RedHat machine will include a number of mail clients including mutt, 
elm, pine, mh, and Netscape. 



85321, Systems Administration Chapter 16: Network Applications 

David Jones (20.01.00)  Page 432 

 

Reading 
 

The resource materials section on the 85321 Website/CD-ROM has pointers 
to a number of documents including a sendmail tutorial and a 
comparison of IMAP and POP.  You will need to use these resources for the 
following exercise. 

Exercises 

16.13. Set up email on your Linux machine (refer to the Linux mail HOW-
TO). Included in the procedure, obtain a POP mail client and get it 
working. The Netscape web browser includes a POP mail client for 
UNIX (it’s what I use to read my mail).  

16.14. The latest versions of Netscape also support IMAP.  Configure your 
system to use IMAP rather than POP. 

World-Wide Web 
The World-Wide Web is the killer application which has really taken the 
Internet by storm.  Most of the Web servers currently on the Internet are UNIX 
machines running the Apache Web server (http://www.apache.org/).  RedHat 
comes with Apache pre-installed.  If you use a Web browser to connect to your 
Linux machine (e.g. http://localhost/) Redhat provides pointers to 
documentation on configuring Apache. 

Conclusions  
This chapter has looked in general at how network services work and in 
particular at file and print sharing with Samba, email and World-Wide Web. 
Most network services consist of a 

• port  

• daemon 

• client 

• protocol. 

Client programs communicate using an agreed upon protocol with daemons 
which await requests on a particular port. 

Network ports are used to deliver information to one of the many network 
applications that may be running on a computer. Network ports from 0-1024 
are used for pre-defined purposes. The allocation of those ports to applications 
is done in the /etc/services  file. The netstat  command can be used to 
examine the currently active network connections including which ports are 
being used.  



85321, Systems Administration Chapter 16: Network Applications 

David Jones (20.01.00)  Page 433 

Network daemons are either started in the system start-up scripts 
(/etc/rc.d/* ) or by the inetd  daemon. The file /etc/inetd.conf  is used to 
configure which servers inetd will start.  

Most Linux systems come already installed with tcpd (TCPWrappers). tcpd 
works with inetd  to provide a number of additional features including 
logging, user validation and access control.  

Intranets are the latest industry buzzword and are simply a local area network 
built using Internet protocols. Linux in conjunction with Samba and other 
public domain tools can act as a very cheap Intranet server offering file and 
print services, WWW server, electronic mail, ftp and other Internet services. 
Samba is a public domain piece of software that enables a UNIX computer to 
act as a file and printer server for client machines running Windows and other 
LanManager clients.  

Review Questions 
16.1  

Explain the role each of the following play in UNIX networking  

1) /etc/services   

2) /etc/inetd.conf   

3) inetd   

4) tcpd 

16.2  

You’ve just obtained the daemon for WWWWW (the fictious replacement for 
the WWW). The daemon uses the protocol HTTTTTTP, wants to use port 81 
and is likely to get many requests. Outline the steps you would have to 
complete to install the daemon including  

\ the files you would have to modify and why  
] how you would start the daemon (it’s a program called htttttpd)  

16.3  

People have been trying to telnet to your machine server.my.domain . List 
all the things that could be stopping them from logging in.  

 



85321, Systems Administration Chapter 17:  Security 

David Jones (20.01.00) Page 434 

Chapter 
Security 

 

Local Introduction 
The following reading is taken from the Security HOW-TO by Kevin Fenzi 
and Dave Wreski as part of the Linux Documentation Project.  It offers a much 
better coverage of the material than the original, locally produced chapter (that 
material is available from the 85321 website/CD-ROM if you feel the need to 
do a comparison or want an alternative discussion of the data). 

As you read through the following think about  

• How the advice included here would change the way your personal Linux 
computer is currently configured? 

• How this advice would change the way you managed a server in a small 
organisation? 

The HOWTO itself mentions a wide range of other resources you can use to 
get more information about the topic of Security. 

Linux Secur ity HOWTO 
  Kevin Fenzi, kevin@scrye.com & Dave Wreski, dave@nic.com 

  v1.0.2, 25 April 1999 

 

This document is a general overview of security issues that face the   
administrator of Linux systems. It covers general security philosophy and a 
number of specific examples of how to better secure your Linux system from 
intruders. Also included are pointers to security-related material and programs. 
Improvements, constructive criticism, additions and corrections are gratefully 
accepted. Please mail your feedback to both authors, with "Security HOWTO" 
in the subject. 

Introduction 
This document covers some of the main issues that affect Linux  security. 
General philosophy and net-born resources are discussed. 

A number of other HOWTO documents overlap with security issues, and  
those documents have been pointed to wherever appropriate. 

This document is not meant to be a up to date exploits document. Large  
numbers of new exploits happen all the time. This document will tell  you 
where to look for such up to date information, and will give some  general 
methods to prevent such exploits from taking place. 



85321, Systems Administration Chapter 17:  Security 

David Jones (20.01.00) Page 435 

New Versions of this Document 

New versions of this document will be periodically posted to  
comp.os.linux.answers.  They will also be added to the various anonymous 
FTP sites that archive such information, including: 

  ftp://metalab.unc.edu/pub/Linux/docs/HOWTO 

In addition, you should generally be able to find this document on the Linux 
World Wide Web home page via: 

  http://metalab.unc.edu/mdw/linux.html 

Finally, the very latest version of this document should also be available in 
various formats from: 

  http://scrye.com/~kevin/lsh/ 

Feedback 

All comments, error reports, additional information and criticism of all sorts 
should be directed to: 

  kevin@scrye.com 

  and 

  dave@nic.com 

Note: Please send your feedback to both authors. Also, be sure and include 
"Linux" "security", or "HOWTO" in your subject to avoid Kevin’s spam filter. 

Disclaimer 

No liability for the contents of this document can be accepted.  Use the 
concepts, examples and other content at your own risk. Additionally, this is an 
early version, possibly with many inaccuracies or errors. 

A number of the examples and descriptions use the RedHat(tm) package layout 
and system setup. Your mileage may vary. 

As far as we know, only programs that, under certain terms may be used or 
evaluated for personal purposes will be described. Most of the programs will 
be available, complete with source, under GNU 
<http://www.gnu.org/copyleft/gpl.html> terms. 

Copyright Information 

This document is copyrighted (c)1998,1999 Kevin Fenzi and Dave Wreski, 
and distributed under the following terms: 

• Linux HOWTO documents may be reproduced and distributed in whole or     
in part, in any medium, physical or electronic, as long as this copyright 
notice is retained on all copies. Commercial redistribution is allowed and 
encouraged; however, the authors would like to be notified of any such 
distributions. 

• All translations, derivative works, or aggregate works incorporating any 
Linux HOWTO documents must be covered under this copyright notice.  
That is, you may not produce a derivative work from a HOWTO and 



85321, Systems Administration Chapter 17:  Security 

David Jones (20.01.00) Page 436 

impose additional restrictions on its distribution. Exceptions to these rules 
may be granted under certain conditions; please contact the Linux 
HOWTO coordinator at the address given below. 

• If you have questions, please contact Tim Bynum, the Linux HOWTO    
coordinator, at  tjbynum@metalab.unc.edu 

Overview 
This document will attempt to explain some procedures and commonly-used 
software to help your Linux system be more secure.  It is important to discuss 
some of the basic concepts first, and create a security foundation, before we 
get started. 

Why Do We Need Security? 

In the ever-changing world of global data communications, inexpensive 
Internet connections, and fast-paced software development, security is 
becoming more and more of an issue.  Security is now a basic requirement 
because global computing is inherently insecure.  As your data goes from point 
A to point B on the Internet, for example, it may pass through several other 
points along the way, giving other users the opportunity to intercept, and even 
alter, it.  Even other users on your system may maliciously transform your data 
into something you did not intend.  Unauthorized access to your system may 
be obtained by intruders, also known as "crackers", who then use advanced 
knowledge to impersonate you, steal information from you, or even deny you  
access to your own resources.  If you’re wondering what the difference is 
between a "Hacker" and a "Cracker", see Eric Raymond’s document, "How to 
Become A Hacker", available at http://sagan.earthspace.net/~esr/faqs/hacker-
howto.html. 

How Secure Is Secure? 

First, keep in mind that no computer system can ever be "completely secure". 
All you can do is make it increasingly difficult for someone to compromise 
your system. For the average home Linux user, not much is required to keep 
the casual cracker at bay. For high profile Linux users (banks, 
telecommunications companies, etc), much more work is required. 

Another factor to take into account is that the more secure your system is, the 
more intrusive your security becomes. You need to decide where in this 
balancing act your system will still usable, and yet secure for your purposes. 
For instance, you could require everyone dialing into your system to use a call-
back modem to call them back at their home number. This is more secure, but 
if someone is not at home, it makes it difficult for them to login. You could 
also setup your Linux system with no network or connection to the Internet, 
but this limits it’s usefulness. 

If you are a large to medium-sized site, you should establish a security policy 
stating how much security is required by your site and what auditing is in place 
to check it. You can find a well-known security policy example at 
http://ds.internic.net/rfc/rfc2196.txt.  It has been recently updated, and contains 
a great framework for establishing a security policy for your company. 



85321, Systems Administration Chapter 17:  Security 

David Jones (20.01.00) Page 437 

What Are You Trying to Protect? 

Before you attempt to secure your system, you should determine what level of 
threat you have to protect against, what risks you should or should not take, 
and how vulnerable your system is as a result.  You should analyze your 
system to know what you’re protecting, why you’re protecting it, what value it 
has, and who has responsibility for your data and other assets. 

• Risk is the possibility that an intruder may be successful in attempting to 
access your computer.  Can an intruder read or write files, or execute 
programs that could cause damage?  Can they delete critical data? Can they 
prevent you or your company from getting important work done? Don’t 
forget: someone gaining access to your account, or your system, can also 
impersonate you. 
 
Additionally, having one insecure account on your system can result in 
your entire network being compromised.  If you allow a single user to login 
using a .rhosts file, or to use an insecure service, such as tftp, you risk an 
intruder getting ’his foot in the door’.  Once the intruder has a user account 
on your system, or someone else’s system, it can be used to gain access to 
another system, or another account. 

• Threat is typically from someone with motivation to gain unauthorized 
access to your network or computer.  You must decide who you trust to 
have access to your system, and what threat they could pose. 
 
There are several types of intruders, and it is useful to keep their different 
characteristics in mind as you are securing your systems. 

^ The Curious - This type of intruder is basically interested in finding out 
what type of system and data you have. 

_ The Malicious - This type of intruder is out to either bring down your 
systems, or deface your web page, or otherwise force you to spend time 
and money recovering from the damage he has caused. 

` The High-Profile Intruder - This type of intruder is trying to use your 
system to gain popularity and infamy.  He might use your high-    
profile system to advertise his abilities. 

a The Competition - This type of intruder is interested in what data you 
have on your system.  It might be someone who thinks you have    
something that could benefit him, financially or otherwise. 

b The Borrowers - This type of intruder is interested in setting up shop on 
your system and using it’s resources for their own purposes. They 
typically will run chat or irc servers, porn archive sites, or even DNS 
servers. 

c The Leapfrogger - This type of intruder is only interested in your    
system to use it to get into other systems. If your system is well    
connected or a gateway to a number of internal hosts, you may well     
see this type trying to compromise your system. 

Vulnerability describes how well-protected your computer is from    another 
network, and the potential for someone to gain unauthorized     access.  What’s 
at stake if someone breaks into your system?  Of course the  concerns of a 
dynamic PPP home user will be different from those of a company connecting 



85321, Systems Administration Chapter 17:  Security 

David Jones (20.01.00) Page 438 

their machine to the Internet, or another large network. 
How much time would it take to retrieve/recreate any data that was lost?  An 
initial time investment now can save ten times more time later if you have to 
recreate data that was lost.  Have you checked your backup strategy, and 
verified your data lately? 

Developing A Security Policy 

Create a simple, generic policy for your system that your users can readily 
understand and follow.  It should protect the data you’re safeguarding as well 
as the privacy of the users.  Some things to consider adding are: who has 
access to the system (Can my friend use my account?), who’s allowed to install 
software on the system, who owns what data, disaster recovery, and 
appropriate use of the system. 

A generally accepted security policy starts with the phrase 

                    That which is not permitted is prohibited 

This means that unless you grant access to a service for a user, that user 
shouldn’t be using that service until you do grant access. Make sure the policies 
work on your regular user account. Saying, "Ah, I can’t figure this permissions 
problem out, I’ll just do it as root" can lead to security holes that are very 
obvious, and even ones that haven’t been exploited yet. 

rfc1244 is a document that describes how to create your own network security 
polity. 

rfc1281 is a document that shows an example security policy with detailed 
descriptions of each step. 

Finally, you might want to look at the COAST policy archive at 
ftp://coast.cs.purdue.edu/pub/doc/policy to see what some real life security 
policies look like. 

Means of Securing Your Site 

This document will discuss various means with which you can secure the 
assets you have worked hard for: your local machine, your data, your users, 
your network, even your reputation.  What would happen to your reputation if 
an intruder deleted some of your users’ data?  Or defaced your web site?  Or 
published your company’s corporate project plan for next quarter?  If you are 
planning a network installation, there are many factors you must take into 
account before adding a single machine to your network. 

Even if you have a single dialup PPP account, or just a small site, this does not 
mean intruders won’t be interested in your systems.  Large, high profile sites 
are not the only targets -- many intruders simply want to exploit as many sites 
as possible, regardless of their size. Additionally, they may use a security hole 
in your site to gain access to other sites you’re connected to. 

Intruders have a lot of time on their hands, and can avoid guessing how you’ve 
obscured your system just by trying all the possibilities. There are also a 
number of reasons an intruder may be interested in your systems, which we 
will discuss later. 



85321, Systems Administration Chapter 17:  Security 

David Jones (20.01.00) Page 439 

Host Security 

Perhaps the area of security on which administrators concentrate most is host-
based security.  This typically involves making sure your own system is 
secure, and hoping everyone else on your network does the same.  Choosing 
good passwords, securing your host’s local network services, keeping good 
accounting records, and upgrading programs with known security exploits are 
among the things the local security administrator is responsible for doing.  
Although this is absolutely necessary, it can become a daunting task once your 
network becomes larger than a few machines. 

Network Security 

Network security is also as necessary as local host security.  With hundreds, 
thousands, or more computers on the same network, you can’t rely on each one 
of those systems being secure.  Ensuring that only authorized users can use 
your network, building firewalls, using strong encryption, and ensuring there 
are no "rogue" (that is, unsecured) machines on your network are all part of the 
network security administrator’s duties. 

This document will discuss some of the techniques used to secure your site, 
and hopefully show you some of the ways to prevent an intruder from gaining 
access to what you are trying to protect. 

Security Through Obscurity 

One type of security that must be discussed is "security through obscurity". 
This means, for example, moving a service that has known security 
vunerabilities to a non standard port in hopes that attackers won’t notice it’s 
there and thus won’t exploit it. Rest assured that they can determine that its 
there and will exploit it. Security through obscurity is no security at all. Simply 
because you may have a small site, or a relatively low profile, does not mean 
an intruder won’t be interested in what you have.  We’ll discuss what you’re 
protecting in the next sections. 

Organization of This Document 

This document has been divided into a number of sections. They cover several 
broad security issues. The first, Physical Security, covers how you need to 
protect your physical machine from tampering. The second, Local Security, 
describes how to protect your system from tampering by local users. The third, 
Files and Filesystem Security, shows you how to setup your filesystems and 
premissions on your files. The next, Password Security  and Encryption, 
discusses how to use encryption to better secure your machine and network. 
Kernel Security discusses what kernel options you should set or be aware of 
for a more secure system.  Network Security, describes how to better secure 
your Linux system from network attacks.  Security Preparation, discusses how 
to prepare your machine(s) before bringing them on-line. Next, What To Do 
During and After a Break-in, discusses what to do when you detect a system 
compromise in progress or detect one that has recently happened. In Security  
Resources, some primary security resources are enumerated.  The Q  and A 
section Frequently Asked Questions, answers some frequently  asked 
questions, and finally a conclusion in Conclusion section. 



85321, Systems Administration Chapter 17:  Security 

David Jones (20.01.00) Page 440 

The two main points to realize when reading this document are: 

• Be aware of your system. Check system logs such as  /var/log/messages 

and keep an eye on your system, and 

• Keep your system up to date by making sure you have installed the    
current versions of software and have upgraded per security alerts. Just 
doing this will help make your system markedly more secure. 

Physical Secur ity 
The first layer of security you need to take into account is the physical security 
of your computer systems. Who has direct physical access to your machine? 
Should they? Can you protect your machine from their tampering? Should 
you? 

How much physical security you need on your system is very dependent on 
your situation, and/or budget. 

If you are a home user, you probably don’t need a lot (although you might need 
to protect your machine from tampering by children or annoying relatives).  If 
you are in a Lab, you need considerably more, but users will still need to be 
able to get work done on the machines. Many of the following sections will 
help out. If you are in an office, you may or may not need to secure your 
machine off hours or while you are away. At some companies, leaving your 
console unsecured is a termination offense. 

Obvious physical security methods such as locks on doors, cables, locked 
cabinets, and video surveillance are all good ideas, but beyond the scope of 
this document. :) 

Computer locks 

Many modern PC cases include a "locking" feature. Usually this will be a 
socket on the front of the case that allows you to turn an included key to a 
locked or unlocked position. Case locks can help prevent someone from 
stealing your PC, or opening up the case and directly manipulating/stealing 
your hardware. They can also sometimes prevent someone from rebooting 
your computer on their own floppy or other hardware. 

These case locks do different things according to the support in the 
motherboard and how the case is constructed. On many PC’s they make it so 
you have to break the case to get the case open. On some others, they make it 
so that it will not let you plug in new keyboards and mice. Check your 
motherboard or case instructions for more information. This can sometimes be 
a very useful feature, even though the locks are usually very low quality and 
can easily be defeated by attackers with locksmithing. 

Some cases (most notably SPARCs and macs) have a dongle on the back that, 
if you put a cable through attackers would have to cut the cable or break the 
case to get into it. Just putting a padlock or combo lock through these can be a 
good deterrent to someone stealing your machine. 



85321, Systems Administration Chapter 17:  Security 

David Jones (20.01.00) Page 441 

BIOS Security 

The BIOS is the lowest level of software that configures or manipulates your 
x86-based hardware. LILO and other Linux boot methods access the BIOS to 
determine how to boot up your Linux machine. Other hardware that Linux runs 
on has similar software (OpenFirmware on Macs and new Suns, Sun boot 
PROM, etc...). You can use your BIOS to prevent attackers from rebooting 
your machine and manipulating your Linux system. 

Many PC BIOSs let you set a boot password. This doesn’t provide all that 
much security (the BIOS can be reset, or removed if someone can get into the 
case), but might be a good deterrent (i.e. it will take time and leave traces of 
tampering). Similarly, on S/Linux (Linux for SPARC(tm) porcessor 
machines), your EEPROM can be set to require a boot-up password. This 
might slow attackers down. 

Many x86 BIOSs also allow you to specify various other good security 
settings. Check your BIOS manual or look at it the next time you boot up. For 
example, some BIOSs disallow booting from floppy drives and some require 
passwords to access some BIOS features. 

Note: If you have a server machine, and you set up a boot password, your 
machine will not boot up unattended. Keep in mind that you will need to come 
in and supply the password in the event of a power failure. ;( 

Boot Loader Security 

The various Linux boot loaders also can have a boot password set. LILO, for 
example, has password and restricted settings; password always requires 
password at boot time, whereas restricted requires a boot-time password only if 
you specify options (such as single) at the LILO  prompt. 

Keep in mind when setting all these passwords that you need to remember 
them. :) Also remember that these passwords will merely slow the determined 
attacker.  They won’t prevent someone from booting from a floppy, and 
mounting your root partition.  If you are using security in conjunction with a 
boot loader, you might as well disable booting from a floppy in your 
computer’s BIOS, and password-protect the BIOS. 

If anyone has security-related information from a different boot loader, we 
would love to hear it. (grub, silo, milo, linload, etc). 

Note: If you have a server machine, and you set up a boot password, your 
machine will not boot up unattended. Keep in mind that you will need to come 
in and supply the password in the event of a power failure. ;( 

xlock and vlock 

If you wander away from your machine from time to time, it is nice to be able 
to "lock" your console so that no one tampers with or looks at your work. Two 
programs that do this are: xlock and vlock. 

xlock is a X display locker. It should be included in any Linux distributions 
that support X. Check out the man page for it for more options, but in general 
you can run xlock from any xterm on your console and it will lock the display 
and require your password to unlock. 



85321, Systems Administration Chapter 17:  Security 

David Jones (20.01.00) Page 442 

vlock is a simple little program that allows you to lock some or all of the 
virtual consoles on your Linux box. You can lock just the one you are working 
in or all of them. If you just lock one, others can come in and use the console; 
they will just not be able to use your virtual console until you unlock it. vlock 
ships with redhat Linux, but your mileage may vary. 

Of course locking your console will prevent someone from tampering with 
your work, but won’t prevent them from rebooting your machine or otherwise 
disrupting your work. It also does not prevent them from accessing your 
machine from another machine on the network and causing problems. 

More importantly, it does not prevent someone from switching out of the X 
Window System entirely, and going to a normal virtual console login prompt, 
or to the VC that X11 was started from, and suspending it, thus obtaining your 
priviledges.  For this reason, you might consider only using it while under 
control of xdm. 

Detecting Physical Security Compromises 

The first thing to always note is when your machine was rebooted. Since Linux 
is a robust and stable OS, the only times your machine should reboot is when 
you take it down for OS upgrades, hardware swapping, or the like. If your 
machine has rebooted without you doing it, that may be a sign that an intruder 
has compromised it. Many of the ways that your machine can be compromised 
require the intruder to reboot or power off your machine. 

Check for signs of tampering on the case and computer area. Although many 
intruders clean traces of their presence out of logs, it’s a good idea to check 
through them all and note any discrepancy. 

It is also a good idea to store log data at a secure location, such as a dedicated 
log server within your well-protected network.  Once a machine has been 
compromised, log data becomes of little use as it most likely has also been 
modified by the intruder. 

The syslog daemon can be configured to automatically send log data to a 
central syslog server, but this is typically sent in cleartext data, allowing an 
intruder to view data as it is being transferred.  This may reveal information 
about your network that is not intended to be public.  There are syslog 
daemons available that encrypt the data as it is being sent. 

Also be aware that faking syslog messages is easy - with an exploit program 
having been published.  Syslog even accepts net log entries claiming to come 
from the local host without indicating their true origin. 

Some things to check for in your logs: 

• Short or incomplete logs. 

• Logs containing strange timestamps. 

• Logs with incorrect permissions or ownership. 

• Records of reboots or restarting of services. 

• missing logs. 

• su entries or logins from strange places. 

We will discuss system log data ‘‘later’’ in the HOWTO. 



85321, Systems Administration Chapter 17:  Security 

David Jones (20.01.00) Page 443 

Local Secur ity 
The next thing to take a look at is the security in your system against attacks 
from local users. Did we just say local users? Yes! 

Getting access to a local user account is one of the first things that system 
intruders attempt while on their way to exploiting the root account. With lax 
local security, they can then "upgrade" their normal user access to root access 
using a variety of bugs and poorly setup local services. If you make sure your 
local security is tight, then the intruder will have another hurdle to jump. 

Local users can also cause a lot of havoc with your system even (especially) if 
they really are who they say they are. Providing accounts to people you don’t 
know or have no contact information for is a very bad idea. 

Creating New Accounts 

You should make sure to provide user accounts with only the minimal 
requirements for the task they need to do. If you provide your son (age 10) 
with an account, you might want him to only have access to a word processor 
or drawing program, but be unable to delete data that is not his. 

Several good rules of thumb when allowing other people legitimate access to 
your Linux machine: 

• Give them the minimal amount of privileges they need. 

• Be aware when/where they login from, or should be logging in from. 

• Make sure to remove inactive accounts 

• The use of the same user-ID on all computers and networks is advisable to 
ease account maintence, as well as permit easier analysis of log data. 

• The creation of group user-IDs should be absolutely prohibited. 

• User accounts also provide accountability, and this is not possible with 
group accounts. 

Many local user accounts that are used in security compromises are ones that 
have not been used in months or years. Since no one is using them they, 
provide the ideal attack vehicle. 

Root Security 

The most sought-after account on your machine is the root (superuser) account.  
This account has authority over the entire machine, which may also include 
authority over other machines on the network. Remember that you should only 
use the root account for very short, specific tasks, and should mostly run as a 
normal user. Even small mistakes made while logged in as the root user can 
cause problems. The less time you are on with root privledges, the safer you 
will be. 

Several tricks to avoid messing up your own box as root: 

• When doing some complex command, try running it first in a non-   
destructive way...especially commands that use globbing: e.g., if you want 
to do  "rm foo*.bak", first do "ls foo*.bak" and make sure you are going to 



85321, Systems Administration Chapter 17:  Security 

David Jones (20.01.00) Page 444 

delete the files you think you are. Using echo in place of destructive 
commands also sometimes works. 

• Provide your users with a default alias to the rm command to ask for 
confirmation for deletion of files. 

• Only become root to do single specific tasks. If you find yourself trying to 
figure out how to do something, go back to a normal user shell until you 
are sure what needs to be done by root. 

• The command path for the root user is very important.  The command    
path (that is, the PATH environment variable) specifies the directories in 
which the shell searches for programs.  Try to limit the command path for 
the root user as much as possible, and never include . (which means "the 
current directory") in your PATH.  Additionally, never have writable 
directories in your search path, as this can allow attackers to modify or 
place new binaries in your search path, allowing them to run as root the 
next time you run that command. 

• Never use the rlogin/rsh/rexec suite of tools (called the r- utilities) as root. 
They are subject to many sorts of attacks, and are downright dangerous run 
as root. Never create a .rhosts file for root. 

• The /etc/securetty file contains a list of terminals that root can login from. 
By default (on Red Hat Linux) this is set to only the local virtual 
consoles(vtys). Be very careful of adding anything else to this file. You 
should be able to login remotely as your regular user account and then su if 
you need to (hopefully over ssh or other encrypted channel), so there is no 
need to be able to login directly as root. 

• Always be slow and deliberate running as root. Your actions could affect a 
lot of things. Think before you type! 

If you absolutely positively need to allow someone (hopefully very trusted) to 
have root access to your machine, there are a few tools that can help. sudo 
allows users to use their password to access a limited set of commands as root. 
This would allow you to, for instance, let a user be able to eject and mount 
removable media on your Linux box, but have no other root privileges. sudo 
also keeps a log of all successful and unsuccessful sudo attempts, allowing you 
to track down who used what command to do what. For this reason sudo works 
well even in places where a number of people have root access, because it 
helps you keep track of changes made. 

Although sudo can be used to give specific users specific privileges for 
specific tasks, it does have several shortcomings. It should be used only for a 
limited set of tasks, like restarting a server, or adding new users.  Any program 
that offers a shell escape will give root access to a user invoking it via sudo.  
This includes most editors, for example.  Also, a program as innocuous as 
/bin/cat can be used to overwrite files, which could allow root to be exploited. 
Consider sudo as a means for accountability, and don’t expect it to replace the 
root user and still be secure. 



85321, Systems Administration Chapter 17:  Security 

David Jones (20.01.00) Page 445 

Files and Filesystem Secur ity 
A few minutes of preparation and planning ahead before putting your systems 
online can help to protect them and the data stored on them. 

• There should never be a reason for users’ home directories to allow    
SUID/SGID programs to be run from there.  Use the nosuid option in     
/etc/fstab for partitions that are writable by others than root. You may also 
wish to use nodev and noexec on users’ home  partitions, as well as /var, 
thus prohibiting execution of  programs, and creation of character or block 
devices, which should  never be necessary anyway. 

• If you are exporting filesystems using NFS, be sure to configure   
/etc/exports with the most restrictive access possible.  This means not using 
wildcards, not allowing root write access, and exporting read-only 
wherever possible. 

• Configure your users’ file-creation umask to be as restrictive as possible.  
See ‘‘umask settings’’. 

• If you are mounting filesystems using a network filesystem such as NFS, 
be sure to configure /etc/exports with suitable restrictions. Typically, using 
‘nodev’, ‘nosuid’, and perhaps ‘noexec’, are desireable. 

• Set filesystem limits instead of allowing unlimited as is the default.  You 
can control the per-user limits using the resource-limits PAM module and 
/etc/pam.d/limits.conf.  For example, limits for group users might look like 
this: 
                 @users     hard  core    0 
                 @users     hard  nproc   50 
                 @users     hard  rss     5000 

This says to prohibit the creation of core files, restrict the number of 
processes to 50, and restrict memory usage per user to 5M. 

• The /var/log/wtmp and /var/run/utmp files contain the login records for all 
users on your system.  Their integrity must be maintained because it can be 
used to determine when and from where a user (or potential intruder) has 
entered your system.  These files should also have 644 permissions, 
without affecting normal system operation. 

• The immutable bit can be used to prevent accidentally deleting or 
overwriting a file that must be protected.  It also prevents someone from 
creating a symbolic link to the file (such symbolic links have been the 
source of attacks involving deleting /etc/passwd or /etc/shadow).  See the 
chattr(1) man page for information on the immutable bit. 

• SUID and SGID files on your system are a potential security risk, and 
should be monitored closely.  Because these programs grant special 
privileges to the user who is executing them, it is necessary to ensure that 
insecure programs are not installed.  A favorite trick of crackers is to 
exploit SUID-root programs, then leave a SUID program as a backdoor to 
get in the next time, even if the original hole is plugged.  Find all 
SUID/SGID programs on your system, and keep track of what they are, so 
you are aware of any changes which could indicate a potential intruder.  
Use the following command to find all SUID/SGID programs on your 
system: 
 



85321, Systems Administration Chapter 17:  Security 

David Jones (20.01.00) Page 446 

 root#  find / -type f \( -perm -04000 -o -perm -02000 \)  
 

The Debian distribution runs a job each night to determine what SUID files 
exist. It then compairs this to the previous nights run. You can look in 
/var/log/suid* for this log. 
 
You can remove the SUID or SGID permissions on a suspicious program 
with chmod, then change it back if you absolutely feel it is necessary. 

• World-writable files, particularly system files, can be a security hole if a 
cracker gains access to your system and modifies them.  Additionally, 
world-writable directories are dangerous, since they allow a cracker to add 
or delete files as he wishes.  To locate all world-writable files on your 
system, use the following command: 
 
 root# find / -perm -2 ! -type l –ls 

 
and be sure you know why those files are writable.  In the normal course of 
operation, several files will be world-writable, including some from /dev, 
and symbolic links, thus the ! -type l which excludes these from the 
previous find command. 

• Unowned files may also be an indication an intruder has accessed your 
system.  You can locate files on your system that have no owner, or belong 
to no group with the command: 
 
 root# find / -nouser -o -nogroup -print  

• Finding .rhosts files should be a part of your regular system administration 
duties, as these files should not be permitted on your system.  Remember, a 
cracker only needs one insecure account to potentially gain access to your 
entire network.  You can locate all .rhosts files on your system with the 
following command: 
 
 root# find /home -name .rhosts -print  

• Finally, before changing permissions on any system files, make sure you 
understand what you are doing. Never change permissions on a file 
because it seems like the easy way to get things working. Always 
determine why the file has that permission before changing it. 

Umask Settings 

The umask command can be used to determine the default file creation mode 
on your system. It is the octal complement of the desired file mode. If files are 
created without any regard to their permissions settings, the user could 
inadvertently give read or write permission to someone that should not have 
this permission. Typically umask settings include 022, 027, and 077 (which is 
the most restrictive).  Normally the umask is set in /etc/profile, so it applies to 
all users on the system.  The file creation mask can be calculated by 
subtracting the desired value from 777.  In other words, a umask of 777 would 
cause newly-created files to contain no read, write or execute permission for 
anyone.  A mask of 666 would cause newly-created files to have a mask of 
111.  For example, you may have a line that looks like this: 

  # Set the user’s default umask 

  umask 033 



85321, Systems Administration Chapter 17:  Security 

David Jones (20.01.00) Page 447 

Be sure to make root’s umask 077, which will disable read, write, and execute 
permission for other users, unless explicitly changed using chmod.  In this 
case, newly-created directories would have 744 permissions, obtained by 
subtracting 033 from 777.  Newly-created files using the 033 umask would 
have permissions of 644. 

If you are using Red Hat, and adhere to their user and group ID creation 
scheme (User Private Groups), it is only necessary to use 002 for a umask.  
This is due to the fact that the default configuration is one user per group. 

File Permissions 

It’s important to ensure that your system files are not open for casual editing by 
users and groups who shouldn’t be doing such system maintenance. 

Unix seperates access control on files and directories according to three 
characteristics:  owner, group, and other.  There is always exactly one owner, 
any number of members of the group, and everyone else. 

A quick explanation of Unix permissions: 

Ownership      - Which user(s) and group(s) retain(s) control of the permission 
settings of the node and parent of the node 

Permissions    - Bits capable of being set or reset to allow certain types of 
access to it.  Permissions for directories may have a different meaning than the 
same set of permissions on files. 

Read: 

• To be able to view contents of a file 

• To be able to read a directory 

Write: 

• To be able to add to or change a file 

• To be able to delete or move files in a directory 

Execute: 

To be able to run a binary program or shell script 

To be able to search in a directory, combined with read permission 

Save Text Attribute: (For directories) 

The "sticky bit" also has a different meaning when applied to directories than 
when applied to files.  If the sticky bit is set on a directory, then a user may 
only delete files that the he owns or for which he has explicit write permission 
granted, even when he has write access to the directory.  This is designed for 
directories like /tmp, which are world-writable, but where it may not be 
desirable to allow any user to delete files at will.  The sticky bit is seen as a t in 
a long directory listing. 



85321, Systems Administration Chapter 17:  Security 

David Jones (20.01.00) Page 448 

SUID Attribute: (For Files) 

This describes set-user-id permissions on the file.  When the set user ID access 
mode is set in the owner permissions, and the file is executable, processes 
which run it are granted access to system resources based on user who owns 
the file, as opposed to the user who created the process. This is the cause of 
many "buffer overflow" exploits. 

SGID Attribute: (For Files) 

If set in the group permissions, this bit controls the "set group id" status of a 
file.  This behaves the same way as SUID, except the group is affected instead.  
The file must be executable for this to have any effect. 

SGID Attribute: (For directories) 

If you set the SGID bit on a directory (with chmod g+s directory), files created 
in that directory will have their group set to the directory’s group. 

You - The owner of the file 

Group - The group you belong to 

Everyone - Anyone on the system that is not the owner or a member of the 
group 

File Example: 

         -rw-r--r--  1 kevin  users         114 Aug 28  1997 .zlogin 
         1st bit - directory?             (no) 
          2nd bit - read by owner?         (yes, by kevin) 
           3rd bit - write by owner?        (yes, by kevin) 
            4th bit - execute by owner?      (no) 
             5th bit - read by group?         (yes, by users) 
              6th bit - write by group?        (no) 
               7th bit - execute by group?      (no) 
                8th bit - read by everyone?      (yes, by everyone) 
                 9th bit - write by everyone?     (no) 
                  10th bit - execute by everyone?  (no) 

The following lines are examples of the minimum sets of permissions that are 
required to perform the access described.  You may want to give more 
permission than what’s listed here, but this should describe what these 
minimum permissions on files do: 

-r--------  Allow read access to the file by owner 
--w-------  Allows the owner to modify or delete the file 
            (Note that anyone with write permission to the directory 
            the file is in can overwrite it and thus delete it) 
---x------  The owner can execute this program, but not shell  
            scripts, which still need read permission 
---s------  Will execute with effective User ID = to owner 
--------s-  Will execute with effective Group ID = to group 
-rw------T  No update of "last modified time".  Usually used for swap 
            files 
---t------  No effect.  (formerly sticky bit) 



85321, Systems Administration Chapter 17:  Security 

David Jones (20.01.00) Page 449 

Directory Example: 

drwxr-xr-x  3 kevin  users         512 Sep 19 13:47 .public_html/ 
1st bit - directory?             (yes, it contains many files) 
 2nd bit - read by owner?         (yes, by kevin) 
  3rd bit - write by owner?        (yes, by kevin) 
   4th bit - execute by owner?      (yes, by kevin) 
    5th bit - read by group?         (yes, by users 
     6th bit - write by group?        (no) 
      7th bit - execute by group?      (yes, by users) 
       8th bit - read by everyone?      (yes, by everyone) 
        9th bit - write by everyone?     (no) 
         10th bit - execute by everyone?  (yes, by everyone) 

The following lines are examples of the minimum sets of permissions that are 
required to perform the access described.  You may want to give more 
permission than what’s listed, but this should describe what these minimum 
permissions on directories do: 

dr--------  The contents can be listed, but file attributes can’t be  
            read 
d--x------  The directory can be entered, and used in full execution 
            paths 
dr-x------  File attributes can be read by owner 
d-wx------  Files can be created/deleted, even if the directory 
            isn’t the current one 
d------x-t  Prevents files from deletion by others with write 
            access. Used on /tmp 
d---s--s--  No effect 

System configuration files (usually in /etc) are usually mode 640 (-rw-r-----), 
and owned by root. Depending on your sites security requirements, you might 
adjust this. Never leave any system files writable by a group or everyone.  
Some configuration files, including /etc/shadow, should only be readable by 
root, and directories in /etc should at least not be accessible by others. 

SUID Shell Scripts 

SUID shell scripts are a serious security risk, and for this reason the kernel will 
not honor them.  Regardless of how secure you think the shell script is, it can 
be exploited to give the cracker a root shell. 

Integrity Checking with Tripwire Tripwire 

Another very good way to detect local (and also network) attacks on your 
system is to run an integrity checker like Tripwire.  Tripwire runs a number of 
checksums on all your important binaries and config files and compares them 
against a database of former, known-good values as a reference. Thus, any 
changes in the files will be flagged. 

It’s a good idea to install Tripwire onto a floppy, and then physically set the 
write protect on the floppy. This way intruders can’t tamper with Tripwire 
itself or change the database. Once you have Tripwire setup, it’s a good idea to 
run it as part of your normal security administration duties to see if anything 
has changed. 

You can even add a crontab entry to run Tripwire from your floppy every night 
and mail you the results in the morning. Something like: 

# set mailto 
MAILTO=kevin 



85321, Systems Administration Chapter 17:  Security 

David Jones (20.01.00) Page 450 

# run Tripwire 
15 05 * * * root /usr/local/adm/tcheck/tripwire 

will mail you a report each morning at 5:15am. 

Tripwire can be a godsend to detecting intruders before you would otherwise 
notice them. Since a lot of files change on the average system, you have to be 
careful what is cracker activity and what is your own doing. 

You can find Tripwire at http://www.tripwiresecurity.com, free of charge.  
Manuals and support can be purchased. 

5.4.  Trojan Horses 

"Trojan Horses" are named after the fabled ploy in Homer’s "Iliad". The idea is 
that a cracker distributes a program or binary that sounds great, and encourages 
other people to download it and run it as root.  Then the program can 
compromise their system while they are not paying attention. While they think 
the binary they just pulled down does one thing (and it might very well), it also 
compromises their security. 

You should take care of what programs you install on your machine. Redhat 
provides MD5 checksums and PGP signatures on it’s RPM files so you can 
verify you are installing the real thing. Other distributions have similar 
methods. You should never run any unfamiliar binary, for which you don’t 
have the source, as root! Few attackers are willing to release source code to 
public scrutiny. 

Although it can be complex, make sure you are getting the source for a 
program from its real distribution site. If the program is going to run as root, 
make sure either you or someone you trust has looked over the source and 
verified it. 

Password Secur ity and Encryption 
One of the most important security features used today are passwords. It is 
important for both you and all your users to have secure, unguessable 
passwords. Most of the more recent Linux distributions include passwd 
programs that do not allow you to set a easily guessable password. Make sure 
your passwd program is up to date and has these features. 

In-depth discussion of encryption is beyond the scope of this document, but an 
introduction is in order. Encryption is very useful, possibly even necessary in 
this day and age. There are all sorts of methods of encrypting data, each with 
its own set of characteristics. 

Most Unicies (and Linux is no exception) primarily use a one-way encryption 
algorithm, called DES (Data Encryption Standard) to encrypt your passwords. 
This encrypted password is then stored in (typically) /etc/passwd (or less 
commonly) /etc/shadow. When you attempt to login, the password you type in 
is encrypted again and compared with the entry in the file that stores your 
passwords. If they match, it must be the same password, and you are allowed 
access. Although DES is a two-way encryption algorithm (you can code and 
then decode a message, given the right keys), the variant that most unices use 
is one-way.  This means that it should not be possible to reverse the encryption 
to get the password from the contents of /etc/passwd (or /etc/shadow). 



85321, Systems Administration Chapter 17:  Security 

David Jones (20.01.00) Page 451 

Brute force attacks, such as "Crack" or "John the Ripper" (see the later section 
covering these) can often guess passwords unless your password is sufficiently 
random. PAM modules (see below) allow you to use a different encryption 
routine with your passwords (MD5 or the like).  You can use Crack to your 
advantage, as well.  Consider periodically running Crack against your own 
password database, to find insecure passwords.  Then contact the offending 
user, and instruct him to change his password. 

You can go to http://consult.cern.ch/writeup/security/security_3.html for 
information on how to choose a good password. 

PGP and Public-Key Cryptography 

Public-key cryptography, such as that used for PGP, uses one key for 
encryption, and one key for decryption.  Traditional cryptography, however, 
uses the same key for encryption and decryption; this key must be known to 
both parties, and thus somehow transferred from one to the other securely. 

To alleviate the need to securely transmit the encryption key, public-key 
encryption uses two separate keys: a public key and a private key.  Each 
person’s public key is available by anyone to do the encryption, while at the 
same time each person keeps his or her private key to decrypt messages 
encrypted with the correct public key. 

There are advantages to both public key and private key cryptography, and you 
can read about those differences in the RSA Cryptography FAQ 
<http://www.rsa.com/rsalabs/newfaq/>, listed at the end of this section. 

PGP (Pretty Good Privacy) is well-supported on Linux. Versions 2.6.2 and 5.0 
are known to work well. For a good primer on PGP and how to use it, take a 
look at the PGP FAQ: http://www.pgp.com/service/export/faq/55faq.cgi 

Be sure to use the version that is applicable to your country. Due to export 
restrictions by the US Government, strong-encryption is prohibited from being 
transferred in electronic form outside the country. 

US export controls are now managed by EAR (Export Administration 
Regulations).  They are no longer governed by ITAR.  There is also a step-by-
step guide for configuring PGP on Linux available at 

http://mercury.chem.pitt.edu/~angel/LinuxFocus/English/November1997/articl
e7.html. 

It was written for the international version of PGP, but is easily adaptable to 
the United States version.  You may also need a patch for some of the latest 
versions of Linux; the patch is available at 
ftp://metalab.unc.edu/pub/Linux/apps/crypto. 

There is a project working on a free re-implementation of pgp with open 
source. GnuPG is a complete and free replacement for PGP. Because it does 
not use IDEA or RSA it can be used without any restrictions.  GnuPG is nearly 
in compliance with RFC2440 (OpenPGP).  See the GNU  Privacy Guard web 
page for more information: http://www.gpg.org/. 

More information on cryptography can be found in the RSA cryptography  
FAQ, available at http://www.rsa.com/rsalabs/newfaq/.  Here you will  find 
information on such terms as "Diffie-Hellman", "public-key cryptography", 
"digital certificates", etc. 



85321, Systems Administration Chapter 17:  Security 

David Jones (20.01.00) Page 452 

SSL, S-HTTP, HTTPS and S/MIME 

Often users ask about the differences between the various security and 
encryption protocols, and how to use them.  While this isn’t an encryption 
document, it is a good idea to explain briefly what each protocol is, and where 
to find more information. 

• SSL: - SSL, or Secure Sockets Layer, is an encryption method developed 
by Netscape to provide security over the Internet.  It supports several 
different encryption protocols, and provides client and server 
authentication.  SSL operates at the transport layer, creates a secure 
encrypted channel of data, and thus can seamlessly encrypt data of many 
types.  This is most commonly seen when going to a secure site to view a 
secure online document with Communicator, and serves as the basis for 
secure communications with Communicator, as well as many other 
Netscape Communications data encryption.  More information can be 
found at http://www.consensus.com/security/ssl-talk-faq.html.  Information 
on Netscape’s other security implementations, and a good starting point for 
these protocols is available at http://home.netscape.com/info/security-
doc.html. 

• S-HTTP: - S-HTTP is another protocol that provides security services 
across the Internet.  It was designed to provide confidentiality, 
authentication, integrity, and non-repudiability [cannot be mistaken for 
someone else] while supporting multiple key-management mechanisms and 
cryptographic algorithms via option negotiation between the parties 
involved in each transaction. S-HTTP is limited to the specific software 
that is implementing it, and encrypts each message individually. [ From 
RSA Cryptography FAQ, page 138] 

• S/MIME: - S/MIME, or Secure Multipurpose Internet Mail Extension, is an 
encryption standard used to encrypt electronic mail and other types of 
messages on the Internet.  It is an open standard developed by RSA, so it is 
likely we will see it on Linux one day soon.  More information on S/MIME 
can be found at 
http://home.netscape.com/assist/security/smime/overview.html. 

Linux IPSEC Implementations 

Along with CIPE, and other forms of data encryption, there is also several 
other implementations of IPSEC for Linux.  IPSEC is an effort by the IETF to 
create cryptographically-secure communications at the IP network level, and to 
provide authentication, integrity, access control, and confidentiality.  
Information on IPSEC and Internet draft can be found at 
http://www.ietf.org/html.charters/ipsec-charter.html.  You can also find links 
to other protocols involving key management, and an IPSEC mailing list and 
archives. 

The x-kernel Linux implementation, which is being developed at the 
University of Arizona, uses an object-based framework for implementing 
network protocols called x-kernel, and can be found at  
http://www.cs.arizona.edu/xkernel/hpcc-blue/linux.html.  Most simply, the x-
kernel is a method of passing messages at the kernel level, which makes for an 
easier implementation. 



85321, Systems Administration Chapter 17:  Security 

David Jones (20.01.00) Page 453 

Another freely-available IPSEC implementation is the Linux FreeS/WAN 
IPSEC.  Their web page states, 

"These services allow you to build secure tunnels through untrusted 
networks. Everything passing through the untrusted net is encrypted by the 
IPSEC gateway machine and decrypted by the gateway at the other end. 
The result is Virtual Private Network or VPN. This is a network which is 
effectively private even though it includes machines at several diffeent sites 
connected by the insecure Internet." 

It’s available for download from http://www.xs4all.nl/~freeswan/, and has just 
reached 1.0 at the time of this writing. 

As with other forms of cryptography, it is not distributed with the kernel by 
default due to export restrictions. 

ssh  (Secure Shell) and stelnet 

ssh and stelnet are programs that allow you to login to remote systems and 
have a encrypted connection. 

ssh is a suite of programs used as a secure replacement for rlogin, rsh and rcp.  
It uses public-key cryptography to encrypt communications between two hosts, 
as well as to authenticate users. It can be used to securely login to a remote 
host or copy data between hosts, while preventing man-in-the-middle attacks 
(session hijacking) and DNS spoofing.  It will perform data compression on 
your connections, and secure X11 communications between hosts.  The ssh 
home page can be found at http://www.cs.hut.fi/ssh/ 

You can also use ssh from your Windows workstation to your Linux ssh 
server.  There are several freely available Windows client implementations, 
including the one at http://guardian.htu.tuwien.ac.at/therapy/ssh/ as well as a 
commercial implementation from DataFellows, at 
http://www.datafellows.com. There is also a open source project to re-
implement ssh called "psst...". For more information see: 
http://www.net.lut.ac.uk/psst/ 

SSLeay is a free implementation of Netscape’s Secure Sockets Layer protocol, 
developed by Eric Young.  It includes several applications, such as Secure 
telnet, a module for Apache, several databases, as well as several algorithms 
including DES, IDEA and Blowfish. 

Using this library, a secure telnet replacement has been created that does 
encryption over a telnet connection.  Unlike SSH, stelnet uses SSL, the Secure 
Sockets Layer protocol developed by Netscape.  You can find Secure telnet 
and Secure FTP by starting with the SSLeay FAQ, available at 
http://www.psy.uq.oz.au/~ftp/Crypto/. 

SRP is another secure telnet/ftp implementation. From their web page: 

"The SRP project is developing secure Internet software for free worldwide 
use. Starting with a fully-secure Telnet and FTP distribution, we hope to 
supplant weak networked authentication systems with strong replacements 
that do not sacrifice user-friendliness for security. Security should be the 
default, not an option!" 

For more information, go to http://srp.stanford.edu/srp. 



85321, Systems Administration Chapter 17:  Security 

David Jones (20.01.00) Page 454 

PAM - Pluggable Authentication Modules 

Newer versions of the Red Hat Linux distribution ship with a unified 
authentication scheme called "PAM". PAM allows you to change your 
authentication methods and requirements on the fly, and encapsulate all local 
authentication methods without recompiling any of your binaries.  
Configuration of PAM is beyond the scope of this document, but be sure to 
take a look at the PAM web site for more information. 
http://www.kernel.org/pub/linux/libs/pam/index.html. 

Just a few of the things you can do with PAM: 

• Use encryption other than DES for your passwords. (Making them harder 
to brute-force decode) 

• Set resource limits on all your users so they can’t perform denial-of-service 
attacks (number of processes, amount of memory, etc) 

• Enable shadow passwords (see below) on the fly 

• allow specific users to login only at specific times from specific places 

Within a few hours of installing and configuring your system, you can prevent 
many attacks before they even occur.  For example, use PAM to disable the 
system-wide usage of .rhosts files in user’s home directories by adding these 
lines to /etc/pam.d/rlogin: 

# 
# Disable rsh/rlogin/rexec for users 
# 
login auth required pam_rhosts_auth.so no_rhosts 

Cryptographic IP Encapsulation (CIPE) 

The primary goal of this software is to provide a facility for secure (against 
eavesdropping, including traffic analysis, and faked message injection) 
subnetwork interconnection across an insecure packet network such as the 
Internet. 

CIPE encrypts the data at the network level.  Packets traveling between hosts 
on the network are encrypted.  The encryption engine is placed near the driver 
which sends and receives packets. 

This is unlike SSH, which encrypts the data by connection, at the socket level.  
A logical connection between programs running on different hosts is 
encrypted. 

CIPE can be used in tunnelling, in order to create a Virtual Private Network.  
Low-level encryption has the advantage that it can be made to work 
transparently between the two networks connected in the VPN, without any 
change to application software. 

Summarized from the CIPE documentation: 

The IPSEC standards define a set of protocols which can be used (among 
other things) to build encrypted VPNs.  However, IPSEC is a rather 
heavyweight and complicated protocol set with a lot of options, 
implementations of the full protocol set are still rarely used and some issues 
(such as key management) are still not fully resolved.  CIPE uses a simpler 
approach, in which many things which can be parameterized (such as the 



85321, Systems Administration Chapter 17:  Security 

David Jones (20.01.00) Page 455 

choice of the actual encryption algorithm used) are an install-time fixed 
choice.  This limits flexibility, but allows for a simple (and therefore 
efficient, easy to debug...)  implementation. 

Further information can be found at 
http://www.inka.de/~bigred/devel/cipe.html 

As with other forms of cryptography, it is not distributed with the kernel by 
default due to export restrictions. 

Kerberos 

Kerberos is an authentication system developed by the Athena Project at MIT. 
When a user logs in, Kerberos authenticates that user (using a password), and 
provides the user with a way to prove her identity to other servers and hosts 
scattered around the network. 

This authentication is then used by programs such as rlogin to allow the user to 
login to other hosts without a password (in place of the .rhosts file).  This 
authentication method can also used by the mail system in order to guarantee 
that mail is delivered to the correct person, as well as to guarantee that the 
sender is who he claims to be. 

Kerberos and the other programs that come with it, prevent users from 
"spoofing" the system into believing they are someone else. Unfortunately, 
installing Kerberos is very intrusive, requiring the modification or replacement 
of numerous standard programs. 

You can find more information about kerberos by looking at the kerberos 
FAQ, and the code can be found at http://nii.isi.edu/info/kerberos/. 

[From: Stein, Jennifer G., Clifford Neuman, and Jeffrey L. Schiller.  
"Kerberos: An Authentication Service for Open Network Systems." USENIX  
Conference Proceedings, Dallas, Texas, Winter 1998.] 

Kerberos should not be your first step in improving security of your host.  It is 
quite involved, and not as widely used as, say, SSH. 

Shadow Passwords. 

Shadow passwords are a means of keeping your encrypted password 
information secret from normal users. Normally, this encrypted passwords are 
stored in /etc/passwd file for all to read. Anyone can then run password guesser 
programs on them and attempt to determine what they are.  Shadow passwords, 
by contrast, are saved in /etc/shadow, which only privileged users can read. In 
order to use shadow passwords, you need to make sure all your utilities that 
need access to password information are recompiled to support them. PAM 
(above) also allows you to just plug in a shadow module; it doesn’t require re-
compilation of executables.  You can refer to the Shadow-Password HOWTO 
for further information if necessary.  It is available at 
http://metalab.unc.edu/LDP/HOWTO/Shadow-Password-HOWTO.html It is  
rather dated now, and will not be required for distributions supporting PAM. 



85321, Systems Administration Chapter 17:  Security 

David Jones (20.01.00) Page 456 

“Crack" and "John the Ripper" 

If for some reason your passwd program is not enforcing hard-to-guess 
passwords, you might want to run a password-cracking program and make  
sure your users’ passwords are secure. 

Password cracking programs work on a simple idea: they try every word in the 
dictionary, and then variations on those words, encrypting each one and 
checking it against your encrypted password. If they get a match they know 
what your password is. 

There are a number of programs out there...the two most notable of which are 
"Crack" and "John the Ripper" 
(http://www.false.com/security/john/index.html) . They will take up a lot of 
your cpu time, but you should be able to tell if an attacker could get in using 
them by running them first yourself and notifying users with weak passwords. 
Note that an attacker would have to use some other hole first in order to read 
your /etc/passwd file, but such holes are more common than you might think. 

Because security is only as strong as the most insecure host, it is worth 
mentioning that if you have any Windows machines on your network, you 
should check out L0phtCrack, a Crack implementation for Windows.  It’s 
available from http://www.l0pht.com 

CFS & TCFS: Cryptographic File Systems 

CFS is a way of encrypting an entire directory trees and allowing users to store 
encrypted files on them. It uses a NFS server running on the local machine. 
RPMS are available at http://www.replay.com/redhat/, and more information 
on how it all works is at ftp://ftp.research.att.com/dist/mab/. 

TCFS improves on CFS by adding more integration with the file system, so 
that it’s transparent to users that the file system that is encrypted. more 
information at: http://edu-gw.dia.unisa.it/tcfs/. 

It also need not be used on entire filesystems. It works on directories trees as 
well. 

X11, SVGA and display security 

X11 

It’s important for you to secure your graphical display to prevent attackers from 
grabbing your passwords as you type them, reading documents or information 
you are reading on your screen, or even using a hole to gain root access. 
Running remote X applications over a network also can be fraught with peril, 
allowing sniffers to see all your interaction with the remote system. 

X has a number of access-control mechanisms. The simplest of them is host-
based: you use xhost to specify what hosts are allowed access to your display. 
This is not very secure at all, because if someone has access to your machine, 
they can xhost + their machine and get in easily. Also, if you have to allow 
access from an untrusted machine, anyone there can compromise your display. 

When using xdm (X Display Manager) to log in, you get a much better access 
method: MIT-MAGIC-COOKIE-1. A 128-bit "cookie" is generated and stored 
in your .Xauthority file. If you need to allow a remote machine access to your 



85321, Systems Administration Chapter 17:  Security 

David Jones (20.01.00) Page 457 

display, you can use the xauth command and the information in your 
.Xauthority file to provide access to only that connection.  See the Remote-X-
Apps mini-howto, available at 
http://metalab.unc.edu/LDP/HOWTO/mini/Remote-X-Apps.html. 

You can also use ssh (see ‘‘’’, above) to allow secure X connections. This has 
the advantage of also being transparent to the end user, and means that no 
unencrypted data flows across the network. 

Take a look at the Xsecurity man page for more information on X security. 
The safe bet is to use xdm to login to your console and then use ssh to go to 
remote sites on which you with to run X programs. 

SVGA 

SVGAlib programs are typically SUID-root in order to access all your Linux 
machine’s video hardware. This makes them very dangerous. If they crash, you 
typically need to reboot your machine to get a usable console back. Make sure 
any SVGA programs you are running are authentic, and can at least be 
somewhat trusted. Even better, don’t run them at all. 

GGI (Generic Graphics Interface project) 

The Linux GGI project is trying to solve several of the problems with video 
interfaces on Linux. GGI will move a small piece of the video code into the 
Linux kernel, and then control access to the video system. This means GGI 
will be able to restore your console at any time to a known good state. They 
will also allow a secure attention key, so you can be sure that there is no 
Trojan horse login program running on your console. 
http://synergy.caltech.edu/~ggi/ 

Kernel Secur ity 
This is a description of the kernel configuration options that relate to security, 
and an explanation of what they do, and how to use them. 

As the kernel controls your computer’s networking, it is important that it be 
very secure, and not be compromised. To prevent some of the latest 
networking attacks, you should try to keep your kernel version current. You 
can find new kernels at  <ftp://ftp.kernel.org> or from your distribution vendor. 

There is also a international group providing a single unified crypto patch to 
the mainstream linux kernel. This patch provides support for a number of 
cyrptographic subsystems and things that cannot be included in the mainstream 
kernel due to export restrictions. For more information, visit their web page at: 
http://www.kerneli.org 

2.0 Kernel Compile Options 

For 2.0.x kernels, the following options apply. You should see these options 
during the kernel configuration process.  Many of the comments here are from 
./linux/Documentation/Configure.help, which is the same document that is 
referenced while using the Help facility during the make config stage of 
compiling the kernel. 



85321, Systems Administration Chapter 17:  Security 

David Jones (20.01.00) Page 458 

• Network Firewalls (CONFIG_FIREWALL)     This option should be on if 
you intend to run any firewalling or masquerading on your linux machine. 
If it’s just going to be a regular client machine, it’s safe to say no. 

• IP: forwarding/gatewaying (CONFIG_IP_FORWARD) If you enable IP 
forwarding, your Linux box essentially becomes a router.  If your machine 
is on a network, you could be forwarding data from one network to 
another, and perhaps subverting a firewall that was put there to prevent this 
from happening.  Normal dial-up users will want to disable this, and other 
users should concentrate on the security implications of doing this.  
Firewall machines will want this enabled, and used in conjunction with 
firewall software. 
You can enable IP forwarding dynamically using the following command: 
 
       root#   echo 1 > /proc/sys/net/ipv4/ip_forward 
 

  and disable it with the command: 
 
    root#  echo 0 > /proc/sys/net/ipv4/ip_forward 
 

Keep in mind the files, and their sizes, do not reflect their actual sizes, and 
despite being zero-length, may or may not be. 

• IP: syn cookies (CONFIG_SYN_COOKIES) a "SYN Attack" is a denial of 
service (DoS) attack that consumes all the resources on your machine, 
forcing you to reboot.  We can’t think of a reason you wouldn’t normally 
enable this. In the 2.1 kernel series this config option mearly allows syn 
cookies, but does not enable them. To enable them, you have to do: 
  root# echo 1 > /proc/sys/net/ipv4/tcp_syncookies  

• IP: Firewalling (CONFIG_IP_FIREWALL)  This option is necessary if 
you are going to configure your machine as a firewall, do masquerading, or 
wish to protect your dial-up workstation from someone entering via your 
PPP dial-up interface. 

• IP: firewall packet logging (CONFIG_IP_FIREWALL_VERBOSE) This 
option gives you information about packets your firewall received, like 
sender, recipient, port, etc. 

• IP: Drop source routed frames (CONFIG_IP_NOSR) This option should be 
enabled.  Source routed frames contain the entire path to their destination 
inside of the packet.  This means that routers through which the packet 
goes do not need to inspect it, and just forward it on. This could lead to 
data entering your system that may be a potential exploit. 

• IP: masquerading (CONFIG_IP_MASQUERADE) If one of the computers 
on your local network for which your Linux box acts as a firewall wants to 
send something to the outside, your box can "masquerade" as that host, i.e., 
it forwards the traffice to the intended destination, but makes it look like it 
came from the firewall box itself.  See http://www.indyramp.com/masq for 
more information. 

• IP: ICMP masquerading (CONFIG_IP_MASQUERADE_ICMP) This 
option adds ICMP masquerading to the previous option of only 
masquerading TCP or UDP traffic. 

• IP: transparent proxy support (CONFIG_IP_TRANSPARENT_PROXY) 
This enables your Linux firewall to transparently redirect any network 



85321, Systems Administration Chapter 17:  Security 

David Jones (20.01.00) Page 459 

traffice originating from the local network and destined for a remote host to 
a local server, called a "transparent proxy server".  This makes the local 
computers think they are talking to the remote end, while in fact they are 
connected to the local proxy.  See the IP-Masquerading HOWTO and 
http://www.indyramp.com/masq for more information. 

• IP: always defragment (CONFIG_IP_ALWAYS_DEFRAG) Generally this 
option is disabled, but if you are building a firewall or a masquerading 
host, you will want to enable it.  When data is sent from one host to 
another, it does not always get sent as a single packet of data, but rather it 
is fragmented into several pieces.  The problem with this is that the port 
numbers are only stored in the first fragment.  This means that someone 
can insert information into the remaining packets that isn’t supposed to be 
there.  It could also prevent a teardrop attack against an internal host that is 
not yet itself patched against it. 

• Packet Signatures (CONFIG_NCPFS_PACKET_SIGNING) This is an 
option that is available in the 2.1 kernel series that will sign NCP packets 
for stronger security.  Normally you can leave it off, but it is there if you do 
need it. 

• IP: Firewall packet netlink device (CONFIG_IP_FIREWALL_NETLINK)     
This is a really neat option that allows you to analyze the first 128 bytes of 
the packets in a user-space program, to determine if you would like to 
accept or deny the packet, based on its validity. 

2.2 Kernel Compile Options 

For 2.2.x kernels, many of the options are the same, but a few new ones have 
been developed.  Many of the comments here are from 
./linux/Documentation/Configure.help, which is the same document that is 
referenced while using the Help facility during the make config stage of 
compiling the kernel. Only the newly- added options are listed below.  Consult 
the 2.0 description for a list of other necessary options.  The most signficant 
change in the 2.2 kernel series is the IP firewalling code.  The ipchains 
program is now used to install IP firewalling, instead of the ipfwadm program 
used in the 2.0 kernel. 

• Socket Filtering (CONFIG_FILTER) For most people, it’s safe to say no to 
this option. This option allows you to connect a userspace filter to any 
socket and determine if packets should be allowed or denied. Unless you 
have a very specific need and are capable of programming such a filter, 
you should say no. Also note that as of this writing, all protocols were 
supported except TCP. 

• Port Forwarding Port Forwarding is an addition to IP Masquerading which 
allows some forwarding of packets from outside to inside a firewall on 
given ports. This could be useful if, for example, you want to run a web 
server behind the firewall or masquerading host and that web server should 
be accessible from the outside world. An external client sends a request to 
port 80 of the firewall, the firewall forwards this request to the web server, 
the web server handles the request and the results are sent through the 
firewall to the original client. The client thinks that the firewall machine 
itself is running the web server. This can also be used for load balancing if 
you have a farm of identical web servers behind the firewall. 
 



85321, Systems Administration Chapter 17:  Security 

David Jones (20.01.00) Page 460 

Information about this feature is available from 
http://www.monmouth.demon.co.uk/ipsubs/portforwarding.html (to 
browse the WWW, you need to have access to a machine on the Internet 
that has a program like lynx or netscape). For general info, please see 
ftp://ftp.compsoc.net/users/steve/ipportfw/linux21/ 

• Socket Filtering (CONFIG_FILTER) Using this option, user-space 
programs can attach a filter to any socket and thereby tell the kernel that it 
should allow or disallow certain types of data to get through the socket.  
Linux socket filtering works on all socket types except TCP for now.  See 
the text file  ./linux/Documentation/networking/filter.txt for more 
information. 

• IP: Masquerading The 2.2 kernel masquerading has been improved.  It 
provides additional support for masquerading special protocols, etc. Be 
sure to read the IP Chains HOWTO for more information. 

Kernel Devices 

There are a few block and character devices available on Linux that will also 
help you with security. 

The two devices /dev/random and /dev/urandom are provided by the kernel to 
provide random data at any time. 

Both /dev/random and /dev/urandom should be secure enough to use in 
generating PGP keys, ssh challenges, and other applications where secure 
random numbers are requisite.  Attackers should be unable to predict the next 
number given any initial sequence of numbers from these sources.  There has 
been a lot of effort put in to ensuring that the numbers you get from these 
sources are random in every sense of the word. 

The only difference is that /dev/random runs out of random bytes and it makes 
you wait for more to be accumulated.  Note that on some systems, it can block 
for a long time waiting for new user-generated entry to be entered into the 
system.  So you have to use care before using /dev/random.  (Perhaps the best 
thing to do is to use it when you’re generating sensitive keying information, 
and you tell the user to pound on the keyboard repeatedly until you print out 
"OK, enough".) 

/dev/random is high quality entropy, generated from measuring the inter-
interrupt times etc. It blocks until enough bits of random data are available. 

/dev/urandom is similar, but when the store of entropy is running low, it’ll 
return a cryptographically strong hash of what there is. This isn’t as secure, but 
it’s enough for most applications.  You might read from the devices using 
something like: 

root#  head -c 6 /dev/urandom | mmencode  

This will print six random characters on the console, suitable for password 
generation.  You can find mmencode in the metamail package. 

See /usr/src/linux/drivers/char/random.c for a description of the algorithm. 

Thanks to Theodore Y. Ts’o, Jon Lewis, and others from Linux-kernel for 
helping me (Dave) with this. 



85321, Systems Administration Chapter 17:  Security 

David Jones (20.01.00) Page 461 

Network Secur ity 
Network security is becoming more and more important as people spend more 
and more time connected. Compromising network security is often much 
easier than compromising physical or local, and is much more common. 

There are a number of good tools to assist with network security, and more and 
more of them are shipping with Linux distributions. 

Packet Sniffers 

One of the most common ways intruders gain access to more systems on your 
network is by employing a packet sniffer on a already compromised host. This 
"sniffer" just listens on the Ethernet port for things like passwd and login and 
su in the packet stream and then logs the traffic after that. This way, attackers 
gain passwords for systems they are not even attempting to break into. Clear-
text passwords are very vulnerable to this attack. 

Example: Host A has been compromised. Attacker installs a sniffer. Sniffer 
picks up admin logging into Host B from Host C. It gets the admin’s personal 
password as they login to B. Then, the admin does a su to fix a problem. They 
now have the root password for Host B. Later the admin lets someone telnet 
from his account to Host Z on another site. Now the attacker has a 
password/login on Host Z. 

In this day and age, the attacker doesn’t even need to compromise a system to 
do this: they could also bring a laptop or pc into a building and tap into your 
net.   

Using ssh or other encrypted password methods thwarts this attack.  Things 
like APOP for POP accounts also prevents this attack. (Normal POP logins are 
very vulnerable to this, as is anything that sends clear-text passwords over the 
network.) 

System services and tcp_wrappers 

Before you put your Linux system on ANY network the first thing to look at is 
what services you need to offer. Services that you do not need to offer should 
be disabled so that you have one less thing to worry about and attackers have 
one less place to look for a hole. 

There are a number of ways to disable services under Linux. You can look at 
your /etc/inetd.conf file and see what services are being offered by your inetd. 
Disable any that you do not need by commenting them out (# at the beginning 
of the line), and then sending your inetd process a SIGHUP. 

You can also remove (or comment out) services in your /etc/services file. This 
will mean that local clients will also be unable to find the service (i.e., if you 
remove ftp, and try and ftp to a remote site from that machine it will fail with 
an "unknown service" message). It’s usually not worth the trouble to remove 
services, since it provides no additional security. If a local person wanted to 
use ftp even though you had commented it out, they would make their own 
client that use the common FTP port and would still work fine. 

Some of the services you might want to leave enabled are: 

• ftp 



85321, Systems Administration Chapter 17:  Security 

David Jones (20.01.00) Page 462 

• telnet (or ssh) 

• mail, such as pop-3 or imap 

• identd 

If you know you are not going to use some particular package, you can also 
delete it entirely. rpm -e packagename under the Red Hat distribution will 
erase an entire package. Under debian dpkg --remove does the same thing. 

Additionally, you really want to disable the rsh/rlogin/rcp utilities, including 
login (used by rlogin), shell (used by rcp), and exec (used by rsh) from being 
started in /etc/inetd.conf.  These protocols are extremely insecure and have 
been the cause of exploits in the past. 

You should check your /etc/rc.d/rcN.d, (where N is your systems run level) 
and see if any of the servers started in that directory are not needed. The files 
in /etc/rc.d/rcN.d are actually symbolic links to the directory /etc/rc.d/init.d.  
Renaming the files in the init.d directory has the effect of disabling all the 
symbolic links in /etc/rc.d/rcN.d.  If you only wish to disable a service for a 
particular run level, rename the appropriate file by replacing  the upper-case S 
with a lower-case s, like this: 

root#  cd /etc/rc6.d  
root#  mv S45dhcpd s45dhcpd  

If you have BSD style rc files, you will want to check /etc/rc* for programs 
you don’t need. 

Most Linux distributions ship with tcp_wrappers "wrapping" all your TCP 
services. A tcp_wrapper (tcpd) is invoked from inetd instead of the real server. 
tcpd then checks the host that is requesting the service, and either executes the 
real server, or denies access from that host. tcpd allows you to restrict access to 
your TCP services. You should make a /etc/hosts.allow and add in only those 
hosts that need to have access to your machine’s services. 

If you are a home dialup user, we suggest you deny ALL. tcpd also logs failed 
attempts to access services, so this can give alert you if you are under attack. If 
you add new services, you should be sure to configure them to use 
tcp_wrappers if they are TCP based.  For example, a normal dial-up user can 
prevent outsiders from connecting to his machine, yet still have the ability to 
retrieve mail, and make network connections to the Internet.  To do this, you 
might add the following to your /etc/hosts.allow: 

ALL: 127. 

And of course /etc/hosts.deny would contain: 

ALL: ALL 

which will prevent external connections to your machine, yet still allow you 
from the inside to connect to servers on the Internet. 

Keep in mind that tcp_wrappers only protect services executed from inetd, and 
a select few others.  There very well may be other services running on your 
machine.  You can use netstat -ta to find a list of all the services your machine 
is offering. 

Verify Your DNS Information 

Keeping up-to-date DNS information about all hosts on your network can help 
to increase security.  If an unauthorized host becomes connected to your 



85321, Systems Administration Chapter 17:  Security 

David Jones (20.01.00) Page 463 

network, you can recognize it by its lack of a DNS entry.  Many services can 
be configured to not accept connections from hosts that do not have valid DNS 
entries. 

identd 

identd is a small program that typically runs out of your inetd server. It keeps 
track of what user is running what TCP service, and then reports this to 
whoever requests it. 

Many people misunderstand the usefulness of identd, and so disable it or block 
all off site requests for it. identd is not there to help out remote sites. There is 
no way of knowing if the data you get from the remote identd is correct or not. 
There is no authentication in identd requests. 

Why would you want to run it then? Because it helps you out, and is another 
data-point in tracking. If your identd is un compromised, then you know it’s 
telling remote sites the user-name or uid of people using TCP services. If the 
admin at a remote site comes back to you and tells you user so-and-so was 
trying to hack into their site, you can easily take action against that user. If you 
are not running identd, you will have to look at lots and lots of logs, figure out 
who was on at the time, and in general take a lot more time to track down the 
user. 

The identd that ships with most distributions is more configurable than many 
people think. You can disable it for specific users (they can make a .noident 
file), you can log all identd requests (We recommend it), you can even have 
identd return a uid instead of a user name or even NO-USER. 

SATAN, ISS, and Other Network Scanners 

There are a number of different software packages out there that do port and 
service based scanning of machines or networks. SATAN, ISS, SAINT, and 
Nessus are some of the more well-known ones. This software connects to the 
target machine (or all the target machines on a network) on all the ports they 
can, and try to determine what service is running there. Based on this 
information, you can tell if the machine is vulnerable to a specific exploit on 
that server. 

SATAN (Security Administrator’s Tool for Analyzing Networks) is a port 
scanner with a web interface. It can be configured to do light, medium, or 
strong checks on a machine or a network of machines. It’s a good idea to get 
SATAN and scan your machine or network, and fix the problems it finds. 
Make sure you get the copy of SATAN from metalab 
<http://metalab.unc.edu/pub/packages/security/Satan-for-Linux/> or a 
reputable FTP or web site. There was a Trojan copy of SATAN that was  
distributed out on the net. http://www.trouble.org/~zen/satan/satan.html. Note 
that SATAN has not been updated in quite a while, and some of the other tools 
below might do a better job. 

ISS (Internet Security Scanner) is another port-based scanner. It is faster than 
Satan, and thus might be better for large networks. However, SATAN tends to 
provide more information. 



85321, Systems Administration Chapter 17:  Security 

David Jones (20.01.00) Page 464 

Abacus is a suite of tools to provide host based security and intrusion 
detection. look at it’s home page on the web for more information. 
http://www.psionic.com/abacus/ 

SAINT is a updated version of SATAN. It is web based and has many more up 
to date tests than SATAN. You can find out more about it at: 
http://www.wwdsi.com/~saint 

Nessus is a free security scanner. It has a GTK graphical interface for ease of 
use. It is also designed with a very nice plugin setup for new port scanning 
tests. For more information, take a look at: http://www.nessus.org 

Detecting Port Scans 

There are some tools designed to alert you to probes by SATAN and ISS and 
other scanning software. However, liberal use of tcp_wrappers, and make sure 
to look over your log files regularly, you should be able to notice such probes. 
Even on the lowest setting, SATAN still leaves traces in the logs on a stock 
Red Hat system. 

There are also "stealth" port scanners.  A packet with the TCP ACK bit set (as 
is done with established connections) will likely get through a packet-filtering 
firewall.  The returned RST packet from a port that _had no established 
session_ can be taken as proof of life on that port.  I don’t think TCP wrappers 
will detect this. 

sendmail , qmail  and MTA’s 

One of the most important services you can provide is a mail server. 
Unfortunately, it is also one of the most vulnerable to attack, simply due to the 
number of tasks it must perform and the privileges it typically needs. 

If you are using sendmail it is very important to keep up on current versions. 
sendmail has a long long history of security exploits. Always make sure you 
are running the most recent version from http://www.sendmail.org. 

Keep in mind that sendmail does not have to be running in order for you to 
send mail.  If you are a home user, you can disable sendmail entirely, and 
simply use your mail client to send mail.  You might also choose to remove the 
"-bd" flag from the sendmail startup file, thereby disabling incoming requests 
for mail.  In other words, you can execute sendmail from your startup script 
using the following instead: 

# /usr/lib/sendmail -q15m 

This will cause sendmail to flush the mail queue every fifteen minutes for any 
messages that could not be successfully delivered on the first attempt. 

Many administrators choose not to use sendmail, and instead choose one of the 
other mail transport agents. You might consider switching over to qmail. qmail 
was designed with security in mind from the ground up. It’s fast, stable, and 
secure. Qmail can be found at http://www.qmail.org 

In direct competition to qmail is "postfix", written by Wietse Venema, the 
author of tcp_wrappers and other security tools.  Formerly called vmailer, and 
sponsored by IBM, this is also a mail transport agent written from the ground 
up with security in mind.  You can find more information about vmailer at 
http://www.postfix.org 



85321, Systems Administration Chapter 17:  Security 

David Jones (20.01.00) Page 465 

Denial of Service Attacks 

A "Denial of Service" (DoS) attack is one where the attacker tries to make 
some resource too busy to answer legitimate requests, or to deny legitimate 
users access to your machine. 

Denial of service attacks have increased greatly in recent years. Some of the 
more popular and recent ones are listed below. Note that new ones show up all 
the time, so this is just a few examples. Read the Linux security lists and the 
bugtraq list and archives for more current information. 

• SYN Flooding - SYN flooding is a network denial of service attack. It 
takes advantage of a "loophole" in the way TCP connections are created. 
The newer Linux kernels (2.0.30 and up) have several  configurable 
options to prevent SYN flood attacks from denying people access to your 
machine or services. See ‘‘Kernel Security’’ for proper kernel protection 
options. 

• Pentium "F00F" Bug - It was recently discovered that a series of assembly 
codes sent to a genuine Intel Pentium processor would reboot the machine.  
This affects every machine with a Pentium processor (not clones, not 
Pentium Pro or PII), no matter what operating system it’s running. Linux 
kernels 2.0.32 and up contain a work around for this bug, preventing it 
from locking your machine. Kernel 2.0.33 has an improved version of the 
kernel fix, and is suggested over 2.0.32.  If you are running on a Pentium, 
you should upgrade now! 

• Ping Flooding - Ping flooding is a simple brute-force denial of service 
attack. The attacker sends a "flood" of ICMP packets to your machine. If 
they are doing this from a host with better bandwidth than yours, your 
machine will be unable to send anything on the network. A variation on 
this attack, called "smurfing", sends ICMP packets to a host with your 
machine’s return IP, allowing them to flood you less detectably.  You can 
find more information about the "smurf" attack at 
http://www.quadrunner.com/~chuegen/smurf.txt  If you are ever under a 
ping flood attack, use a tool like tcpdump to determine where the packets 
are coming from (or appear to be coming from), then contact your provider 
with this information. Ping floods can most easily be stopped at the router 
level or by using a firewall. 

• Ping o’ Death - The Ping o’ Death attack sends ICMP ECHO REQUEST 
packets that are too large to fit in the kernel data structures intended to 
store them.  Because sending a single, large (65,510 bytes) "ping" packet to 
many systems will cause them to hang or even crash, this problem was 
quickly dubbed the "Ping o’ Death."  This one has long been fixed, and is 
no longer anything to worry about. 

• Teardrop / New Tear - One of the most recent exploits involves a bug 
present in the IP fragmentation code on Linux and Windows platforms.  It 
is fixed in kernel version 2.0.33, and does not require selecting any kernel 
compile-time options to utilize the  fix.  Linux is apparently not vulnerable 
to the "newtear" exploit. 

You can find code for most exploits, and a more in-depth description of how 
they work, at http://www.rootshell.com using their search engine. 



85321, Systems Administration Chapter 17:  Security 

David Jones (20.01.00) Page 466 

NFS (Network File System) Security. 

NFS is a very widely-used file sharing protocol. It allows servers running nfsd 
and mountd to "export" entire filesystems to other machines using NFS 
filesystem support built in to their kernels (or some other client support if they 
are not Linux machines).  mountd keeps track of mounted filesystems in 
/etc/mtab, and can display them with showmount. 

Many sites use NFS to serve home directories to users, so that no matter what 
machine in the cluster they login to, they will have all their home files. 

There is some small amount of security allowed in exporting filesystems. You 
can make your nfsd map the remote root user (uid=0) to the nobody user, 
denying them total access to the files exported. However, since individual 
users have access to their own (or at least the same uid) files, the remote root 
user can login or su to their account and have total access to their files. This is 
only a small hindrance to an attacker that has access to mount your remote 
filesystems. 

If you must use NFS, make sure you export to only those machines that you 
really need to. Never export your entire root directory; export only directories 
you need to export. 

See the NFS HOWTO for more information on NFS, available at 
http://metalab.unc.edu/mdw/HOWTO/NFS-HOWTO.html 

NIS (Network Information Service) (formerly YP). 

Network Information service (formerly YP) is a means of distributing 
information to a group of machines. The NIS master holds the information 
tables and converts them into NIS map files. These maps are then served over 
the network, allowing NIS client machines to get login, password, home 
directory and shell information (all the information in a standard /etc/passwd 
file). This allows users to change their password once and have it take effect 
on all the machines in the NIS domain. 

NIS is not at all secure. It was never meant to be. It was meant to be handy and 
useful. Anyone that can guess the name of your NIS domain (anywhere on the 
net) can get a copy of your passwd file, and use "crack" and "John the Ripper" 
against your users’ passwords. Also, it is possible to spoof NIS and do all sorts 
of nasty tricks. If you must use NIS, make sure you are aware of the dangers. 

There is a much more secure replacement for NIS, called NIS+.  Check out the 
NIS HOWTO for more information: 
http://metalab.unc.edu/mdw/HOWTO/NIS-HOWTO.html 

Firewalls 

Firewalls are a means of controlling what information is allowed into and out 
of your local network. Typically the firewall host is connected to the Internet 
and your local LAN, and the only access from your LAN to the Internet is 
through the firewall. This way the firewall can control what passes back and 
forth from the Internet and your lan. 

There are a number of types of firewalls and methods of setting them up. 
Linux machines make pretty good firewalls. Firewall code can be built right 
into 2.0 and higher kernels. The ipfwadm for 2.0 kernels, or ipchains for 2.2 



85321, Systems Administration Chapter 17:  Security 

David Jones (20.01.00) Page 467 

kernels, user-space tools allows you to change, on the fly, the types of network 
traffic you allow.  You can also log particular types of network traffic. 

Firewalls are a very useful and important technique in securing your network. 
However, never think that because you have a firewall, you don’t need to 
secure the machines behind it. This is a fatal mistake. Check out the very good 
Firewall-HOWTO at your latest metalab archive for more information on 
firewalls and Linux. http://metalab.unc.edu/mdw/HOWTO/Firewall-
HOWTO.html 

More information can also be found in the IP-Masquerade mini-howto: 
http://metalab.unc.edu/mdw/HOWTO/mini/IP-Masquerade.html 

More information on ipfwadm (The tool that lets you change settings on your 
firewall, can be found at it’s home page: http://www.xos.nl/linux/ipfwadm/ 

If you have no experience with firewalls, and plan to set up one for more than 
just a simple security policy, the Firewalls book by O’Reilly and Associates or 
other online firewall document is mandatory reading.  Check out 
http://www.ora.com for more information.  The National Institute of Standards 
and Technology have put together an excellent document on firewalls.  
Although dated 1995, it is still quite good.  You can find it at 
http://csrc.nist.gov/nistpubs/800-10/main.html.  Also of interest includes: 

• The Freefire Project -- a list of freely-available firewall tools, available at 
http://sites.inka.de/sites/lina/freefire-l/index_en.html 

• SunWorld Firewall Design -- written by the authors of the O’Reilly book, 
this provides a rough introduction to the different firewall types.  It’s 
available at http://www.sunworld.com/swol-01-1996/swol-01-firewall.html 

IP Chains - Linux Kernel 2.2.x Firewalling 

Linux IP Firewalling Chains is an update to the 2.0 Linux firewalling code for 
the 2.2 kernel.  It has a great deal more features than previous 
implementations, including: 

• More flexible packet manipulations 

• More complex accounting 

• Simple policy changes possible atomically 

• Fragments can be explicitly blocked, denied, etc. 

• Logs suspicious packets. 

• Can handle protocols other than ICMP/TCP/UDP. 

If you are currently using ipfwadm on your 2.0 kernel, there are scripts 
available to convert the ipfwadm command format to the format ipchains uses. 

Be sure to read the IP Chains HOWTO for further information.  It is avilable at 
http://www.rustcorp.com/linux/ipchains/HOWTO.html 

VPN’s - Virtual Private Networks 

VPN’s are a way to establish a "virtual" network on top of some already 
existing network. This virtual network often is encrypted and passes traffic 
only to and from some known entities that have joined the network. VPN’s are 



85321, Systems Administration Chapter 17:  Security 

David Jones (20.01.00) Page 468 

often used to connect someone working at home over the public internet to a 
internal company network by using a encrypted virtual network. 

If you are running a linux masquerading firewall and need to pass MS PPTP 
(Microsoft’s VPN point to point product) packets, there is a linux kernel patch 
out to do just that. See: ip-masq-vpn. 

There are several linux VPN solutions available: 

• vpnd. See the 
http://www.crosswinds.net/nuremberg/~anstein/unix/vpnd.html. 

• Free S/Wan, available at http://www.xs4all.nl/~freeswan/ 

• ssh can be used to construct a VPN.  See the VPN mini-howto for more 
information. 

• vps (virtual private server) at http://www.strongcrypto.com. 

See also the section on IPSEC for pointers and more information. 

Secur ity Preparation (before you go on-line) 
Ok, so you have checked over your system, and determined it’s as secure as 
feasible, and you’re ready to put it online.  There are a few things you should 
now do in order to prepare for an intrusion, so you can quickly disable the 
intruder, and get back up and running. 

Make a Full Backup of Your Machine 

Discussion of backup methods and storage is beyond the scope of this 
document, but here are a few words relating to backups and security: 

If you have less than 650mb of data to store on a partition, a CD-R copy of 
your data is a good way to go (as it’s hard to tamper with later, and if stored 
properly can last a long time). Tapes and other re-writable media should be 
write-protected as soon as your backup is complete, and then verified to 
prevent tampering. Make sure you store your backups in a secure off-line area. 
A good backup will ensure that you have a known good point to restore your 
system from. 

Choosing a Good Backup Schedule 

A six-tape cycle is easy to maintain.  This includes four tapes for during the 
week, one tape for even Fridays, and one tape for odd Fridays.  Perform an 
incremental backup every day, and a full backup on the appropriate Friday 
tape. If you make some particularly important changes or add some important 
data to your system, a full backup might well be in order. 

Backup Your RPM or Debian File Database 

In the event of an intrusion, you can use your RPM database like you would 
use tripwire, but only if you can be sure it too hasn’t been modified.  You 
should copy the RPM database to a floppy, and keep this copy off-line at all 
times. The Debian distribution likely has something similar. 



85321, Systems Administration Chapter 17:  Security 

David Jones (20.01.00) Page 469 

The files /var/lib/rpm/fileindex.rpm and /var/lib/rpm/packages.rpm most likely 
won’t fit on a single floppy.  But if Compressed, each should fit on a seperate 
floppy. 

Now, when your system is compromised, you can use the command: 

root#  rpm -Va  

to verify each file on the system.  See the rpm man page, as there are a few 
other options that can be included to make it less verbose. Keep in mind you 
must also be sure your RPM binary has not been compromised. 

This means that every time a new RPM is added to the system, the RPM 
database will need to be rearchived.  You will have to decide the advantages 
versus drawbacks. 

Keep Track of Your System Accounting Data 

It is very important that the information that comes from syslog has not been 
compromised.  Making the files in /var/log readable and writable by only a 
limited number of users is a good start. 

Be sure to keep an eye on what gets written there, especially under the auth 
facility.  Multiple login failures, for example, can indicate an attempted break-
in. 

Where to look for your log file will depend on your distribution. In a Linux 
system that conforms to the "Linux Filesystem Standard", such as Red Hat, 
you will want to look in /var/log and check messages, mail.log, and others. 

You can find out where your distribution is logging to by looking at your 
/etc/syslog.conf file. This is the file that tells syslogd (the system logging 
daemon) where to log various messages. 

You might also want to configure your log-rotating script or daemon to keep 
logs around longer so you have time to examine them. Take a look at the 
logrotate package on recent Red Hat distributions. Other distributions likely 
have a similar process. 

If your log files have been tampered with, see if you can determine when the 
tampering started, and what sort of things appeared to be tampered with. Are 
there large periods of time that cannot be accounted for?  Checking backup 
tapes (if you have any) for untampered log files is a good idea. 

Log files are typically modified by the intruder in order to cover his tracks, but 
they should still be checked for strange happenings. You may notice the 
intruder attempting to gain entrance, or exploit a program in order to obtain the 
root account. You might see log entries before the intruder has time to modify 
them. 

You should also be sure to seperate the auth facility from other log data, 
including attempts to switch users using su, login attempts, and other user 
accounting information. 

If possible, configure syslog to send a copy of the most important data to a 
secure system.  This will prevent an intruder from covering his tracks by 
deleting his login/su/ftp/etc attempts.  See the syslog.conf man page, and refer 
to the @ option. 



85321, Systems Administration Chapter 17:  Security 

David Jones (20.01.00) Page 470 

There are several more advanced syslogd programs out there. Take a look at 
http://www.core-sdi.com/ssyslog/ for Secure Syslog. Secure Syslog allows you 
to encrypt your syslog entries and make sure no one has tampered with them. 

Another syslogd with more features is syslog-ng. It allows you a lot more 
flexability in your logging and also can has your remote syslog streams to 
prevent tampering. 

Finally, log files are much less useful when no one is reading them. Take some 
time out every once in a while to look over your log files, and get a feeling for 
what they look like on a normal day. Knowing this can help make unusual 
things stand out. 

Apply All New System Updates. 

Most Linux users install from a CD-ROM. Due to the fast-paced nature of 
security fixes, new (fixed) programs are always being released. Before you 
connect your machine to the network, it’s a good idea to check with your 
distribution’s ftp site and get all the updated packages since you received your 
distribution CD-ROM. Many times these packages contain important security 
fixes, so it’s a good idea to get them installed. 

What To Do Dur ing and After  a Breakin 
So you have followed some of the advice here (or elsewhere) and have 
detected a break-in? The first thing to do is to remain calm. Hasty actions can 
cause more harm than the attacker would have. 

Security Compromise Underway. 

Spotting a security compromise under way can be a tense undertaking. How 
you react can have large consequences. 

If the compromise you are seeing is a physical one, odds are you have spotted 
someone who has broken into your home, office or lab. You should notify your 
local authorities. In a lab, you might have spotted someone trying to open a 
case or reboot a machine. Depending on your authority and procedures, you 
might ask them to stop, or contact your local security people. 

If you have detected a local user trying to compromise your security, the first 
thing to do is confirm they are in fact who you think they are. Check the site 
they are logging in from. Is it the site they normally log in from? No? Then use 
a non-electronic means of getting in touch. For instance, call them on the 
phone or walk over to their office/house and talk to them. If they agree that 
they are on, you can ask them to explain what they were doing or tell them to 
cease doing it. If they are not on, and have no idea what you are talking about, 
odds are this incident requires further investigation. Look into such incidents , 
and have lots of information before making any accusations. 

If you have detected a network compromise, the first thing to do (if you are 
able) is to disconnect your network. If they are connected via modem, unplug 
the modem cable; if they are connected via ethernet, unplug the Ethernet cable. 
This will prevent them from doing any further damage, and they will probably 
see it as a network problem rather than detection. 



85321, Systems Administration Chapter 17:  Security 

David Jones (20.01.00) Page 471 

If you are unable to disconnect the network (if you have a busy site, or you do 
not have physical control of your machines), the next best step is to use 
something like tcp_wrappers or ipfwadm to deny access from the intruder’s 
site. 

If you can’t deny all people from the same site as the intruder, locking the 
user’s account will have to do. Note that locking an account is not an easy 
thing. You have to keep in mind .rhosts files, FTP access, and a host of 
possible backdoors). 

After you have done one of the above (disconnected the network, denied 
access from their site, and/or disabled their account), you need to kill all their 
user processes and log them off. 

You should monitor your site well for the next few minutes, as the attacker 
will try to get back in. Perhaps using a different account, and/or from a 
different network address. 

Security Compromise has already happened 

So you have either detected a compromise that has already happened or you 
have detected it and locked (hopefully) the offending attacker out of your 
system. Now what? 

Closing the Hole 

If you are able to determine what means the attacker used to get into your 
system, you should try to close that hole. For instance, perhaps you see several 
FTP entries just before the user logged in. Disable the FTP service and check 
and see if there is an updated version, or if any of the lists know of a fix. 

Check all your log files, and make a visit to your security lists and pages and 
see if there are any new common exploits you can fix.  You can find Caldera 
security fixes at http://www.caldera.com/tech-ref/security/. Red Hat has not yet 
seperated their security fixes from bug fixes, but their distribution errata is 
available at http://www.redhat.com/errata 

Debian now has a security mailing list and web page. See: 
http://www.debian.com/security/ for more information. 

It is very likely that if one vendor has released a security update, that most 
other Linux vendors will as well. 

There is now a linux security auditing project. They are methodically going 
through all the user space utilities and looking for possible security exploits 
and overflows. From their announcement: 

"We are attempting a systematic audit of Linux sources with a view to being 
as secure as OpenBSD. We have already uncovered (and fixed) some 
problems, but more help is welcome.  The list is unmoderated and also a 
useful resource for general security discussions.  The list address is: 
security-audit@ferret.lmh.ox.ac.uk To subscribe, send a mail to: security-
audit-subscribe@ferret.lmh.ox.ac.uk" 

If you don’t lock the attacker out, they will likely be back. Not just back on 
your machine, but back somewhere on your network. If they were running a 
packet sniffer, odds are good they have access to other local machines. 



85321, Systems Administration Chapter 17:  Security 

David Jones (20.01.00) Page 472 

Assessing the Damage 

The first thing is to assess the damage. What has been compromised? If you 
are running an Integrity Checker like Tripwire, you can use it to perform an 
integrity check, and should help to tell you.  If not, you will have to look 
around at all your important data. 

Since Linux systems are getting easier and easier to install, you might consider 
saving your config files and then wiping your disk(s) and reinstalling, then 
restoring your user files from backups and your config files. This will ensure 
that you have a new, clean system.  If you have to backup files from the 
compromised system, be especially cautious of any binaries that you restore, as 
they may be Trojan horses placed there by the intruder. 

Re-installation should be considered mandatory upon an intruder obtaining 
root access.  Additionally, you’d like to keep any evidence there is, so having a 
spare disk in the safe may make sense. 

Then you have to worry about how long ago the compromise happened, and 
whether the backups hold any damaged work.  More on backups later. 

Backups, Backups, Backups! 

Having regular backups is a godsend for security matters. If your system is 
compromised, you can restore the data you need from backups. Of course, 
some data is valuable to the attacker too, and they will not only destroy it, they 
will steal it and have their own copies; but at least you will still have the data. 

You should check several backups back into the past before restoring a file that 
has been tampered with. The intruder could have compromised your files long 
ago, and you could have made many successful backups of the compromised 
file!!! 

Of course, there are also a raft of security concerns with backups. Make sure 
you are storing them in a secure place. Know who has access to them. (If an 
attacker can get your backups, they can have access to all your data without 
you ever knowing it.) 

Tracking Down the Intruder. 

Ok, you have locked the intruder out, and recovered your system, but you’re 
not quite done yet. While it is unlikely that most intruders will ever be caught, 
you should report the attack. 

You should report the attack to the admin contact at the site where the attacker 
attacked your system. You can look up this contact with whois or the Internic 
database. You might send them an email with all applicable log entries and 
dates and times. If you spotted anything else distinctive about your intruder, 
you might mention that too. After sending the email, you should (if you are so 
inclined) follow up with a phone call. If that admin in turn spots your attacker, 
they might be able to talk to the admin of the site where they are coming from 
and so on. 

Good crackers often use many intermediate systems, some (or many) of which 
may not even know they have been compromised. Trying to track a cracker 
back to their home system can be difficult. Being polite to the admins you talk 
to can go a long way to getting help from them.  You should also notify any 



85321, Systems Administration Chapter 17:  Security 

David Jones (20.01.00) Page 473 

security organizations you are a part of (CERT <http://www.cert.org/> or 
similar), as well as your Linux system vendor. 

Secur ity Sources 
There are a LOT of good sites out there for Unix security in general and Linux 
security specifically. It’s very important to subscribe to one (or more) of the 
security mailing lists and keep current on security fixes. Most of these lists are 
very low volume, and very informative. 

FTP Sites 

CERT is the Computer Emergency Response Team. They often send out alerts 
of current attacks and fixes. See ftp://ftp.cert.org for more information. 

Replay (http://www.replay.com) has archives of many security programs. 
Since they are outside the US, they don’t need to obey US crypto restrictions. 

Matt Blaze is the author of CFS and a great security advocate.  Matt’s archive 
is available at ftp://ftp.research.att.com/pub/mab 
<ftp://ftp.research.att.com/pub/mab> 

tue.nl is a great security FTP site in the Netherlands. ftp.win.tue.nl 

Web Sites 

• The Hacker FAQ is a FAQ about hackers: 
http://www.tuxedo.org/~esr/faqs/hacker-howto.html 

• The COAST archive has a large number of Unix security programs and 
information: http://www.cerias.purdue.edu/coast/archive/index.html 

• SuSe Security Page: http://www.suse.de/security/ 

• Rootshell.com is a great site for seeing what exploits are currently being 
used by crackers: http://www.rootshell.com/ 

• BUGTRAQ puts out advisories on security issues: 
http://www.securityfocus.com/forums/bugtraq/intro.html 

• CERT, the Computer Emergency Response Team, puts out advisories on 
common attacks on unix platforms: http://www.cert.org/ 

• Dan Farmer is the author of SATAN and many other security tools.  His 
home site has some interesting security survey information, as well as 
security tools: http://www.trouble.org 

• The Linux security WWW is a good site for Linux security information:   
http://www.ecst.csuchico.edu/~jtmurphy/ 

• Infilsec has a vulnerability engine that can tell you what vunerabilities 
affect a specific platform: http://www.infilsec.com/vulnerabilities/ 

• CIAC sends out periodic security bulletins on common exploits: 
http://ciac.llnl.gov/cgi-bin/index/bulletins 

• A good starting point for Linux Pluggable Authentication modules can be 
found at http://www.kernel.org/pub/linux/libs/pam/.  The debian project 



85321, Systems Administration Chapter 17:  Security 

David Jones (20.01.00) Page 474 

has a web page for their security fixes and information. It is at 
http://www.debian.com/security/. 

• WWW Security FAQ, written by Lincoln Stein, is a great web security 
reference. Find it at http://www.w3.org/Security/Faq/www-security-
faq.html 

Mailing Lists 

Bugtraq:  To subscribe to bugtraq, send mail to listserv@netspace.org 
containing the message body subscribe bugtraq. (see links above for archives). 

CIAC: Send e-mail to majordomo@tholia.llnl.gov. In the BODY (not subject) 
of the message put (either or both): subscribe ciac-bulletin 

Red Hat has a number of mailing lists, the most important of which is the 
redhat-announce list. You can read about security (and other) fixes as soon as 
they come out. Send email to majordomo@redhat.com and put subscribe 
redhat-announce. 

The Debian project has a security mailing list that covers their security fixes. 
see http://www.debian.com/security/ for more information. 

Books - Printed Reading Material 

There are a number of good security books out there. This section lists a few of 
them. In addition to the security specific books, security is covered in a 
number of other books on system administration. 

Building Internet Firewalls By D. Brent Chapman & Elizabeth D. Zwicky 1st 
Edition September 1995  ISBN: 1-56592-124-0 

Practical UNIX & Internet Security, 2nd Edition By Simson Garfinkel & Gene 
Spafford, 2nd Edition April 1996  ISBN: 1-56592-148-8 

Computer Security Basics By Deborah Russell & G.T. Gangemi, Sr.  1st 
Edition July 1991  ISBN: 0-937175-71-4 

Linux Network Administrator’s Guide By Olaf Kirch 1st Edition January 1995  
ISBN: 1-56592-087-2 

PGP: Pretty Good Privacy By Simson Garfinkel 1st Edition December 1994 
ISBN: 1-56592-098-8 

Computer Crime A Crimefighter’s Handbook By David Icove, Karl Seger & 
William VonStorch (Consulting Editor Eugene H. Spafford) 1st Edition 
August 1995 ISBN: 1-56592-086-4 

Glossary 

• authentication: The property of knowing that the data received is the same 
as the data that was sent, and that the claimed sender is in fact the actual 
sender. 

• bastion Host: A computer system that must be highly secured because it is 
vulnerable to attack, usually because it is exposed to the Internet and is a 
main point of contact for users of internal networks.  It gets its name from 
the highly fortified projects on the outer walls of medieval castles.  
Bastions overlook critical areas of defense, usually having strong walls, 



85321, Systems Administration Chapter 17:  Security 

David Jones (20.01.00) Page 475 

room for extra troops, and the occasional useful tub of boiling hot oil for 
discouraging attackers. 

• buffer overflow: Common coding style is to never allocate large enough 
buffers, and to not check for overflows.  When such buffers overflow, the 
executing program (daemon or set-uid program) can be tricked in doing 
some other things.  Generally this works by overwriting a function’s return 
address on the stack to point to another location. 

• denial of service: A denial of service attack is when an attacker consumes 
the resources on your computer for things it was not intended to be doing, 
thus preventing normal use of your network resources for legimite 
purposes. 

• dual-homed Host: A general-purpose computer system that has at least two 
network interfaces. 

• firewall: A component or set of components that restricts access between a 
protected network and the Internet, or between other sets of networks. 

• host: A computer system attached to a network. 

• IP spoofing: IP Spoofing is a complex technical attack that is made up of 
several components.  It is a security exploit that works by tricking 
computers in a trust-relationship that you are someone that you really 
aren’t.  There is an extensive paper written by daemon9, route, and infinity 
in the Volume Seven, Issue fourty-Eight issue of Phrack Magazine. 

• non-repudiation: The property of a receiver being able to prove that the 
sender of some data did in fact send the data even though the sender might 
later deny ever having sent it. 

• packet: The fundamental unit of communication on the Internet. 

• packet filtering: The action a device takes to selectively control the flow of 
data to and from a network.  Packet filters allow or block packets, usually 
while routing them from one network to another (most often from the 
Internet to an internal network, and vice-versa). To accomplish packet 
filtering, you set up rules that specify what types of packets (those to or 
from a particular IP address or port) are to be allowed and what types are to 
be blocked. 

• perimeter network: A network added between a protected network and an 
external network, in order to provide an additional layer of security.  A 
perimeter network is sometimes called a DMZ. 

• proxy server: A program that deals with external servers on behalf of 
internal clients.  Proxy clients talk to proxy servers, which relay approved 
client requests to real servers, and relay answers back to clients. 

• superuser: An informal name for root. 

Frequently Asked Questions 
1. Is it more secure to compile driver support directly into the  kernel, instead 

of making it a module? 
Answer: Some people think it is better to disable the ability to load device 
drivers using modules, because an intruder could load a Trojan module or a 
module that could affect system security. 



85321, Systems Administration Chapter 17:  Security 

David Jones (20.01.00) Page 476 

 
However, in order to load modules, you must be root.  The module object 
files are also only writable by root.  This means the intruder would need 
root access to insert a module.  If the intruder gains root access, there are 
more serious things to worry about than whether he will load a module. 
 
Modules are for dynamically loading support for a particular device that 
may be infrequently used.  On server machines, or firewalls for instance, 
this is very unlikely to happen.  For this reason, it would make more sense 
to compile support directly into the kernel for machines acting as a server.  
Modules are also slower than support compiled directly in the kernel. 

2. Why does logging in as root from a remote machine always fail? 
Answer: See ‘‘Root Security’’.  This is done intentionally to prevent remote 
users from attempting to connect via telnet to your machine as root, which 
is a serious security vulnerability.  Don’t forget: potential intruders have 
time on their side, and can run automated programs to find your password. 

3. How do I enable shadow passwords on my Red Hat 4.2 or 5.x Linux box? 
Answer: Shadow passwords is a mechanism for storing your password in a 
file other than the normal /etc/passwd file.  This has several advantages.  
The first one is that the shadow file, /etc/shadow, is only readable by root, 
unlike /etc/passwd, which must remain readable by everyone.  The other 
advantage is that as the administrator, you can enable or disable accounts 
without everyone knowing the status of other users’ accounts. 
 
The /etc/passwd file is then used to store user and group names, used by 
programs like /bin/ls to map the user ID to the proper username in a 
directory listing. 
 
The /etc/shadow file then only contains the username and his/her password, 
and perhaps accounting information, like when the account expires, etc. 
 
To enable shadow passwords, run pwconv as root, and /etc/shadow should 
now exist, and be used by applications.  Since you are using RH 4.2 or 
above, the PAM modules will automatically adapt to the change from using 
normal /etc/passwd to shadow passwords without any other change. 
 
Since you’re interested in securing your passwords, perhaps you would also 
be interested in generating good passwords to begin with.  For this you can 
use the pam_cracklib module, which is part of PAM.  It runs your 
password against the Crack libraries to help you decide if it is too easily 
guessable by password cracking programs. 

4. How can I enable the Apache SSL extensions? 
Answer: 
1.Get SSLeay 0.8.0 or later from ftp://ftp.psy.uq.oz.au/pub/Crypto/SSL 
2.Build and test and install it! 
3.Get Apache 1.2.5 source  1.3.10 is about to be released 
4.Get Apache SSLeay extensions from here    
ftp://ftp.ox.ac.uk/pub/crypto/SSL/apache_1.2.5+ssl_1.13.tar.gz 
5.Unpack it in the apache-1.2.5 source directory and patch Apache as per 
the README. 
6.Configure and build it. 



85321, Systems Administration Chapter 17:  Security 

David Jones (20.01.00) Page 477 

You might also try Replay Associates which has many pre-built packages, 
and is located outside of the United States. 

5. How can I manipulate user accounts, and still retain security? 
Answer:  The Red Hat distribution, especially RH5.0, contains a great 
number of tools to change the properties of user accounts. 
 
The pwconv and unpwconv programs can be used to convert between 
shadow and non-shadowed passwords. 
 
The pwck and grpck programs can be used to verify proper organization of 
the passwd and group files. 
 
The useradd, usermod, and userdel programs can be used to add, delete and 
modify user accounts.  The groupadd, groupmod, and groupdel programs 
will do the same for groups. Group passwords can be created using 
gpasswd. 
 
All these programs are "shadow-aware" -- that is, if you enable shadow 
they will use /etc/shadow for password information, otherwise it won’t. 
 
See the respective man pages for further information. 

6. How can I password protect specific HTML documents using Apache? 
I bet you didn’t know about http://www.apacheweek.org, did you? 
You can find information on user Authentication at 
http://www.apacheweek.com/features/userauth as well as other web server 
security tips from http://www.apache.org/docs/misc/security_tips.html 

Conclusion 
By subscribing to the security alert mailing lists, and keeping current, you can 
do a lot towards securing your machine. If you pay attention to your log files 
and run something like tripwire regularly, you can do even more. 

A reasonable level of computer security is not difficult to maintain on a home 
machine. More effort is required on business machines, but Linux can indeed 
be a secure platform. Due to the nature of Linux development, security fixes 
often come out much faster than they do on commercial operating systems, 
making Linux an ideal platform when security is a requirement. 

Acknowledgements 
Information here is collected from many sources. Thanks to the following that 
either indirectly or directly have contributed: following who either indirectly or 
directly have contributed: 

       Rob Riggs rob@DevilsThumb.com 

       S. Coffin scoffin@netcom.com 

       Viktor Przebinda viktor@CRYSTAL.MATH.ou.edu 

       Roelof Osinga roelof@eboa.com 

       Kyle Hasselbacher kyle@carefree.quux.soltc.net 



85321, Systems Administration Chapter 17:  Security 

David Jones (20.01.00) Page 478 

       David S. Jackson dsj@dsj.net 

       Todd G. Ruskell ruskell@boulder.nist.gov 

       Rogier Wolff R.E.Wolff@BitWizard.nl 

       Antonomasia ant@notatla.demon.co.uk 

       Nic Bellamy sky@wibble.net 

       Eric Hanchrow offby1@blarg.net 

       Robert J. Bergerrberger@ibd.com 

       Ulrich Alpers lurchi@cdrom.uni-stuttgart.de 

        David Noha dave@c-c-s.com 

The following have translated this HOWTO into various other languages! 

A special thank you to all of them for help spreading the linux word... 

  Polish: Ziemek Borowski ziembor@FAQ-bot.ZiemBor.Waw.PL 

  Japanese: FUJIWARA Teruyoshi fjwr@mtj.biglobe.ne.jp 

  Indonesian: Tedi Heriyanto 22941219@students.ukdw.ac.id



85321, Systems Administration Chapter 17:  Security 

David Jones (20.01.00) Page 479 

 


