Exploring knowledge reuse in design for digital learning: tweaks, H5P, constructive templates and CASA

The following is a draft paper to be submitted to a conference. It’s based on work described in earlier blog posts.


Higher education is being challenged to improve the quality of learning and teaching while at the same time dealing with challenges such as reduced funding and increasing complexity. Design for learning has been proposed as one way to address this challenge, but a question remains around how to sustainably harness all the diverse knowledge required for effective design for digital learning. This paper proposes some initial design principles embodied in the idea of Context-Appropriate Scaffolding Assemblages (CASA) as one potential answer. These principles arose out of prior theory and work, contemporary digital learning practices and the early cycles of an Action Design Research process that has developed two digital ensemble artefacts employed in over 30 courses (units, subjects). Early experience with this approach suggests it can successfully increase the level of design knowledge embedded in digital learning experiences, address shortcomings with current practice, and have a positive impact on the quality of the learning environment.


Learning and teaching within higher education continues to be faced with significant, diverse and on-going challenges. Challenges that increase the difficulty of providing the high-quality learning experiences necessary to produce graduates of the quality society is expecting (Bennett, Lockyer, & Agostinho, 2018). Goodyear (2015) groups these challenges into four categories: massification and the subsequent diversification of needs and expectations; growing expectations of producing work-ready graduates; rapidly changing technologies, creating risk and uncertainty; and, dwindling public funding and competing demands on time. Reconceptualising teaching as design for learning has been identified as a key strategy to sustainably, and at scale, respond to these challenges in a way that offers improvements in learning and teaching (Bennett et al., 2018; Goodyear, 2015). Design for learning aims to improve learning processes and outcomes through the creation of tasks, environments, and social structures that are conducive to effective learning (Goodyear, 2015; Goodyear & Dimitriadis, 2013). The ability of universities to develop the capacity of teaching staff to enhance student learning through design for learning is of increasing financial and strategic importance (Alhadad, Thompson, Knight, Lewis, & Lodge, 2018).

Designing learning experiences that successfully integrate digital tools is a wicked problem. A problem that requires the utilisation of expert knowledge across numerous fields to design solutions that respond appropriately to the unique, incomplete, contextual, and complex nature of learning (Mishra & Koehler, 2008). The shift to teaching as design for learning requires different skills and knowledge, but also brings shifts in the conception of teaching and the identity of the teacher (Gregory & Lodge, 2015). Effective implementation of design for learning requires detailed understanding of pedagogy and design and places cognitive, emotional and social demands on teachers (Alhadad et al., 2018). The ability of teachers to deal with this load has significant impact on learners, learning, and outcomes (Bezuidenhout, 2018). Academic staff report perceptions that expertise in digital technology and instructional design will be increasingly important to their future work, but that these are also the areas where they have the least competency and the highest need for training (Roberts, 2018). Helping teachers integrate digital technology effectively into learning and teaching has been at or near the top of issues facing higher education over several years (Dahlstrom, 2015). However, the nature of this required knowledge is often underestimated by common conceptions of the knowledge required by university teachers (Goodyear, 2015). Responding effectively will not be achieved through a single institutional technology, structure, or design, but instead will require an “amalgamation of strategies and supportive resources” (Alhadad et al., 2018, pp. 427-429). Approaches that do not pay enough attention to the impact on teacher workload run the risk of less than optimal learner outcomes (Gregory & Lodge, 2015).

Universities have adopted several different strategies to ameliorate the difficulty of successfully engaging in design for digital learning. For decades a common solution has been that course design, especially involving the adoption of new methods and technologies, should involve systematic planning by a team of people with appropriate expertise in content, education, technology and other required areas (Dekkers & Andrews, 2000). The use of collaborative design teams with an appropriate, complementary mix of skills, knowledge and experience mirrors the practice in other design fields (Alhadad et al., 2018). However, the prevalence of this practice in higher education has been low, both then (Dekkers & Andrews, 2000) and now. The combination of the high demand and limited availability of people with the necessary knowledge mean that many teaching staff miss out (Bennett, Agostinho, & Lockyer, 2017). A complementary approach is professional development that provides teaching staff with the necessary knowledge of digital technology and instructional design (Roberts, 2018). However, access to professional development is not always possible and funding for professional development and training has rarely kept up with the funding for hardware and infrastructure (Mathes, 2019). There has been work focused on developing methods, tools and repositories to help analyse, capture and encourage reuse of learning designs across disciplines and sectors (Bennett et al., 2017). However, it appears that design for learning continues to struggle to enter mainstream practice (Mor, Craft, & Maina, 2015) with design work undertaken by teachers apparently not including the use of formal methods or systematic representations (Bennett et al., 2017). There does, however, remain on-going demand from academic staff for customisable and reusable ideas for design (Goodyear, 2005). Approaches that respond to academic concerns about workload and time (Gregory & Lodge, 2015) and do not require radical changes to existing work practices nor the development of complex knowledge and skills (Goodyear, 2005).

If there are limitations with current common approaches, what other approaches might exist? Leading to the research question of this study:

How might the diverse knowledge required for effective design for digital learning be shared and used sustainably and at scale?

An Action Design Research (ADR) process is being applied to develop one answer to this question. ADR is used to describe the design, development and evaluation of two digital artefacts – the Card Interface and the Content Interface – and the subsequent formulation of initial design principles that offer a potential answer to the research question. The paper starts by describing the research context and research method. The evolution of each of the two digital artefacts is then described. This experience is then abstracted into six design principles encapsulated in the concept of Context-Appropriate Scaffolding Assemblages (CASA). Finally, the conclusions and implications of this work are discussed.

Research context and method

This research project started in late 2018 within the Learning and Teaching (L&T) section of the Arts, Education and Law (AEL) Group at Griffith University. Staff within the AEL L&T section work with the AEL’s teachers to improve the quality of learning and teaching across about 1300 courses (units, subjects) and 68 programs (degrees). This work seeks to bridge the gaps between the macro-level institutional and technological vision and the practical, coal-face realities of teaching and learning (micro-level). In late 2018 the macro-level vision at Griffith University consisted of current and long-term usage of the Blackboard Learn Learning Management System (LMS) along with a recent decision to move to the Blackboard Ultra LMS. In this context, a challenge was balancing the need to help teaching staff continue to improve learning and teaching within the existing learning environment while at the same time helping the institution develop, refine, and achieve its new macro-level vision. It is within this context that the first offering of Griffith University’s Bachelor of Creative Industries (BCI) program would occur in 2019. The BCI is a future-focused program designed to attract creatives who aspire to a career in the creative industries by instilling an entrepreneurial mindset to engage and challenge the practice and business of the creative industries. Implementation of the program was supported through a year-long strategic project including a project manager and educational developer from the AEL L&T section working with a Program Director and other academic staff. This study starts in late 2018 with a focus on developing the course sites for the seven first year BCI courses. A focus of this work was to develop a striking and innovative design that mirrored the program’s aims and approach. A design that could be maintained by the relevant teaching staff beyond the project’s protected niche. This raised the question of how to ensure that the design knowledge required to maintain a digital learning environment into the future would be available within the teaching team?

To answer this question an Action Design Research (Sein, Henfridsson, Purao, & Rossi, 2011) process was adopted. ADR is a merging of Action Research with Design Research developed within the Information Systems discipline. ADR aims to use the analysis of the continuing emergence of theory-ingrained, digital artefacts within a context as the basis for developing generalised outcomes, including design principles (Sein et al., 2011). A key assumption of ADR is that digital artefacts are not established or fixed. Instead, digital artefacts are ensembles that arise within a context and continue to emerge through development, use and refinement (Sein et al., 2011). A critical element of ADR is that the specific problem being addressed – design of online learning environment for courses within the BCI program – is established as an example of a broader class of problems – how to sustainably and at scale share and reuse the diverse knowledge required for effective design for digital learning (Sein et al., 2011). This shift moves ADR work beyond design – as practised by any learning designer – to research intending to provide guidance to how others might address similar challenges in other contexts that belong to the broader class of design problems.

Figure 1 provides a representation of the ADR four-stage process and the seven principles on which ADR is based. Stages 1 through 3 represent the process through which ensemble digital artefacts are developed, used and evolved within a specific context. The next two sections of this paper describe the emergence of two artefacts developed for the BCI program as they cycled through the first three ADR stages numerous times. The fourth stage of ADR – Formalisation of Learning – aims to abstract the situated knowledge gained during the emergence of digital artefacts into design principles that provide guidance for addressing a class of field problems (Sein et al., 2011). The third section of this paper formalizes the learning gained in the form of six initial design principles structured around the concept of Contextually Appropriate Scaffolding Assemblages (CASA).

Figure 1 – ADR Method: Stages and Principles (adapted from Sein et al., 2011, p. 41)

Card Interface (artefact 1, ADR stages 1-3)

In response to the adoption of a trimester academic calendar, Griffith University encourages the adoption of a modular approach to course design. It is recommended that course profiles use modules to group and describe the teaching and learning activities. Subsequently, it has become common practice for this modular structure to be used within the course site using the Blackboard Learn content area functionality. To do this well, is not straight forward. Blackboard Learn has several functional limitations in legibility, design consistency, content arrangement and content adjustment that make it difficult to achieve quality visual design (Bartuskova, Krejcar, & Soukal, 2015). Usability analysis has also found that the Blackboard content area is inflexible, inefficient to use, and creates confusion for teaching staff regardless of their level of user experience (Kunene & Petrides, 2017). Overcoming these limitations requires levels of technical and design knowledge not typically held by teaching staff. Without this knowledge the resulting designs typically range from purely textual (e.g. the left-hand side of Figure 2) through to exemplars of poor design choices including the likes of blinking text, poor layout, questionable colour choices, and inconsistent design. While specialist design staff can and have been used to provide the necessary design knowledge to implement contextually-appropriate, effective designs, such an approach does not scale. For example, any subsequent modification typically requires the re-engagement of the design staff.

To overcome this challenge the Blackboard Learn user community has developed a collection of related solutions (Abhrahamson & Hillman, 2016; Plaisted & Tkachov, 2011) that use Javascript to package the necessary design knowledge into a form that can be used by teachers. Griffith University has for some time used one of these solutions, the Blackboard Tweaks building block (Plaisted & Tkachov, 2011) developed at the Queensland University of Technology. One of the tweaks offered by this building block – the Themed Course Table – has been widely used by teaching staff to generate a tabular representation of course modules (e.g. the right-hand side of Figure 2). However, experience has shown that the level of knowledge required to maintain and update the Themed Course Table can challenge some teaching staff. For example, re-ordering modules can be difficult for some, and the dates commonly used within the table must be manually added and then modified when copied from one offering to another. Finally, the inherently text-based and tabular design of the Themed Course Table is also increasingly dated. This was an important limitation for the Bachelor of Creative Industries. An alternative was required.

Figure 2 – Example Blackboard Learn Content Areas: Textual versus Themed Course Table

That alternative would use the same approach as the Themed Course Table to achieve a more appropriate outcome. The approach used by the Themed Course Table, other related examples from the Blackboard community, and the H5P authoring tool (Singh & Scholz, 2017) are contemporary examples of constructive templates (Nanard, Nanard, & Kahn, 1998). Constructive templates arose from the hypermedia discipline to encourage the reuse of design knowledge and have been found to reduce cost and improve consistency, reliability and quality while enabling content experts to author and maintain hypermedia systems (Nanard et al., 1998). Constructive templates encapsulate a specific collection of design knowledge required to scaffold the structured provision of necessary data and generate design instances. For example, the Themed Course Table supports the provision of data through the Blackboard content area interface. It then uses design knowledge embedded within the tweak to transform that data into a table. Given these examples and the author’s prior positive experience with the use of constructive templates within digital learning (Author, Year), the initial plan for the BCI Course Content area was to replace the Course Theme Table “template” to adopt both a more contemporary visual design, and a forward-oriented view of design for learning. Dimitriadis and Goodyear (2013) argue that design for learning needs to be more forward-oriented and consider what features will be required in each of the lifecycle stages of a learning activity. That is, as the Course Theme Table replacement is being designed, consider what specific features will be required during configuration, orchestration, and reflection and re-design.

The first step in developing a replacement was to explore contemporary web interface practices for a table replacement. Due to its responsiveness to different devices, highly visual presentation, and widespread use amongst Internet and social media services, a card-based interface was chosen. Based on the metaphor of a paper card, this interface brings together all data for a particular object with an option to add contextual information. Common practice with card-based interfaces is to embed into a card memorable images related to the card content (see Figure 3). Within the context of a course module overview such a practice has the potential to positively impact student cognition, emotions, interest, and motivation (Leutner, 2014; Mayer, 2017). A practical advantage of card-based interfaces is that its widespread use means there are numerous widely available resources to aid implementation. This was especially important to the BCI project team, as it did not have significant graphical and client-side design knowledge to draw upon.

Next, a prototype was developed to test how effectively a card-based interface would represent a course’s learning modules. An iterative process was used to translate features and existing practice from the Course Theme Table to a card-based interface. Feedback from other design staff influenced the evolution of the prototype. It also highlighted differences of opinion about some of the visual elements such as the size of the cards, the number of cards per row, and the inclusion of the date in the top left-hand corner. Eventually the prototype card interface was shown to the BCI teaching team for input and approval. With approval given, a collection of Javascript and HTML was created to transform a specifically formatted Blackboard content area into a card interface.

Figure 3 shows just two of the six different styles of card-based interface currently supported by the Card Interface. This illustrates a key feature of the original conception of constructive templates – separation of content from presentation (Nanard et al., 1998) – allowing for different representations of the same content. The left-hand image in Figure 3 and the inclusion of dates on some cards illustrates one way the Card Interface supports a forward-oriented approach to design. Initially, the module dates are specified during the configuration of a course site. However, the dates typically only apply to the initial offering of the course and will need to be manually changed for subsequent offerings. To address this the Card Interface knows the trimester weekly dates from the university academic calendar. Dates to be included on the Card Interface can then be provided using the week number (e.g. Week 1, Week 5 etc.). The Card Interface identifies the trimester a course offering belongs to and translates all week numbers into the appropriate calendar dates.